Cohesive Zone Models (CZMs) are being increasingly used to simulate fracture and fragmentation processes in metallic, polymeric, and ceramic materials and their composites. Instead of an infinitely sharp crack envisaged in fracture mechanics, CZM presupposes the presence of a fracture process zone where the energy is transferred from external work both in the forward and the wake regions of the propagating crack. In this paper, we examine how the external work flows as recoverable elastic strain energy, inelastic strain energy, and cohesive energy, the latter encompassing the work of fracture and other energy consuming mechanisms within the fracture process zone. It is clearly shown that the plastic energy in the material surrounding the crack is not accounted in the cohesive energy. Thus cohesive zone energy encompasses all the inelastic energy e.g., energy required for grainbridging, cavitation, internal sliding, surface energy but excludes any form of inelastic strain energy in the bounding material.

1.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
2.
Atkinson
,
C.
,
1979
, “
Stress Singularities and Fracture Mechanics
,”
Appl. Mech. Rev.
,
32
(
2
), pp.
123
135
.
3.
Wappling
,
D.
,
Gunnars
,
J.
, and
Stahle
,
1998
, “
Crack Growth Across a Strength Mismatched Bimaterial Interface
,”
Int. J. Fract.
,
89
, pp.
223
243
.
4.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypothesis. Axisymmetrical Cracks
,”
PMM
,
23
, pp.
434
444
.
5.
Barenblatt, G. I., 1962, “Mathematical Theory of Equilibrium Cracks,” Advances in Applied Mechanics, Academic Press, New York, pp. 55–125.
6.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.
7.
Rahulkumar
,
P.
,
Jagota
,
A.
,
Bennison
,
S. J.
, and
Saigal
,
S.
,
2000
, “
Cohesive Element Modeling of Viscoelastic Fracture: Application to Peel Testing of Polymers
,”
Int. J. Solids Struct.
,
37
, pp.
1873
1897
.
8.
Siegmund
,
T.
, and
Brocks
,
W.
,
2000
, “
A Numerical Study on the Correlation Between the Work of Separation and the Dissipation Rate in Ductile Fracture
,”
Eng. Fract. Mech.
,
67
, pp.
139
154
.
9.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
, pp.
2899
2938
.
10.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulation of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
, pp.
1397
1434
.
11.
Foulk
,
J. W.
,
Allen
,
D. H.
, and
Helms
,
K. L. E.
,
2000
, “
Formulation of a Three-Dimensional Cohesive Zone Model for Application to a Finite Element Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
183
, pp.
51
66
.
12.
Espinosa
,
H. D.
,
Dwivedi
,
S.
, and
Lu
,
H. C.
,
2000
, “
Modeling Impact Induced Delamination of Woven Fiber Reinforced Composites with Contact/Cohesive Laws
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
259
290
.
13.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
, pp.
289
324
.
14.
Xu
,
X. P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mater. Sci. Eng.
,
1
, pp.
111
132
.
15.
Yang
,
B.
,
Mall
,
S.
, and
Ravi-Chandar
,
K.
,
2001
, “
A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials
,”
Int. J. Solids Struct.
,
38
, pp.
3927
3944
.
16.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
17.
Rice
,
J. R.
, and
Jian-sheng
,
Wang
,
1989
, “
Embrittlement of Interfaces by Solute Segregation
,”
Mater. Sci. Eng.
,
107
, pp.
23
40
.
18.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
, pp.
21
40
.
19.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.
20.
Tvergaard
,
V.
,
1990
, “
Effect of Fibre Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng.
,
A125
, pp.
203
213
.
21.
Geubelle
,
P. H.
, and
Baylor
,
J.
,
1998
, “
The Impact-Induced Delamination of Laminated Composites: A 2D Simulation
,”
Composites, Part B
,
29B
, pp.
589
602
.
22.
Mohammed
,
I.
, and
Liechti
,
K. M.
,
2000
, “
Cohesive Zone Modeling of Crack Nucleation at Bimaterial Corners
,”
J. Mech. Phys. Solids
,
48
, pp.
735
764
.
23.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2000
, “
Mechanics of Materials: Top-down Approaches to Fracture
,”
Acta Mater.
,
48
, pp.
125
135
.
24.
Ritchie
,
R. O.
,
1999
, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
,
100
, pp.
55
83
.
25.
Jan G. M., and van Mier, 1996, Fracture Processes of Concrete, Assessment of Material Parameters for Fracture Models, CRC press, Boca Raton, FL, p, 291.
26.
ABAQUS, 1998, Manual, version 5.8, Hibbit, Karlsson & Sorensen, Inc.
You do not currently have access to this content.