Under applied mechanical forces, strong mutual interaction or other thermodynamic forces, dislocation shapes become highly curved. We present here a new method for accurate computations of self and mutual interactions between dislocation loops. In this method, dislocation loops of arbitrary shapes are segmented with appropriate parametric equations representing the dislocation line vector. Field equations of infinitesimal linear elasticity are developed on the basis of isotropic elastic Green’s tensor functions. The accuracy and computational speed of the method are illustrated by computing the stress field around a typical (110)-[111] slip loop in a BCC crystal. The method is shown to be highly accurate for close-range dislocation interactions without any loss of computational speed when compared to analytic evaluations of the stress field for short linear segments. Moreover, computations of self-forces and energies of curved segments are guaranteed to be accurate, because of the continuity of line curvature on the loop.

1.
D. Barnett, 1980, Dislocation Modeling of Physical Systems, A. Ashby et al., eds., Pergamon Press, 224.
2.
Brown
L. M.
,
1964
,
Philos. Mag.
,
10
,
441
441
.
3.
deWit
R.
,
1960
,
Sol. State Phys.
,
10
,
269
269
.
4.
DeVincre
B.
and
Condat
M.
,
1992
,
Acta Metall. Mater.
,
40
,
2629
2629
.
5.
DeVincre
B.
and
Kubin
L. P.
,
1994
,
Model. Simul. Mater. Sci. Eng.
,
2
,
559
559
.
6.
Gavazza
S. D.
and
Barnett
D. M.
,
1976
,
J. Mech. Phys. Solids
,
24
,
171
171
.
7.
Ghoniem
N. M.
and
Amodeo
R.
,
1998
, “
Computer Simulation of Dislocation Pattern Formation
,”
Solid State Phenomena
,
3 and 4
,
377
377
.
8.
N. M. Ghoniem and M. Bacaloni, 1997, Eng. Rept., UCLA/MATMOD-97-01, Department of Mechanical and Aerospace Eng., UCLA, Los Angeles, CA.
9.
N. M. Ghoniem, 1999, to be published.
10.
J. P. Hirth and J. Lothe, 1982, Theory of Dislocations, 2nd Ed., Wiley, New York.
11.
Kubin
L. P.
,
Canova
G.
,
Condat
M.
,
DeVincre
B.
,
Pontikis
V.
, and
Brechet
Y.
,
1992
,
Sol. State Phenomena
,
23–24
,
445
445
.
12.
Schwarz
K. W.
,
1997
,
Phys. Rev. Lett.
,
78
,
4785
4785
.
13.
Schwarz
K. W.
and
LeGoues
,
1997
,
Phys. Rev. Lett.
,
79
,
1877
1877
.
14.
K. W. Schwarz, 1998, “Simulation of dislocations on the Mesoscopic Scale,” Parts I and II, to be published.
15.
Wang
H. Y.
and
LeSar
R.
,
1998
,
Philos. Mag.
,
A71
,
149
149
.
16.
Zbib
H. M.
,
Rhee
M.
, and
Hirth
J. P.
,
1998
,
Int. J. Mech. Sci.
,
40
,
113
113
.
This content is only available via PDF.
You do not currently have access to this content.