Abstract

Although the production of polymer/carbon nanotube (CNT) nanocomposites has grown exponentially over the last years for a variety of applications, the availability of polymer/CNT filaments for use in commercial 3D printing systems is very limited, and, currently, little is known about the printability of recycled polymer/CNT nanocomposites. In this respect, the fused filament fabrication (FFF) of recycled thermoplastic polyurethane (TPU)/CNT nanocomposites was investigated with a special focus on the piezoresistive behavior. Mechanically recycled and virgin TPU/CNT nanocomposites with different CNT contents (0.5, 1, 3, and 5 wt% by weight) were subjected to filament extrusion and FFF, and the changes induced by mechanical recycling, CNT contents, and infill orientation were monitored by melt flow index, thermal, mechanical, electrical, and piezoresistive properties. It was found that the recycled TPU nanocomposites exhibit very good printability with mechanical and electrical properties that are generally comparable with those for the virgin nanocomposites, the decrease of the elongation at break at 5 wt% CNTs being the primary challenge for the mechanical recycling of TPU/CNT nanocomposites. The 3D-printed recycled TPU/CNT nanocomposites with 3 wt% and 5 wt% CNTs have very good strain sensing behavior with tunable sensitivity by varying the printing conditions. When targeting strains that suit the human motion (0–68%), the recycled TPU/CNT film sensors printed with 0-infill orientation show higher sensitivity (gauge factor up to 115 and 20 for 3 wt% and 5 wt%, respectively) compared with the virgin TPU/CNT film sensors (gauge factor up to 50 and 15 for 3 wt% and 5 wt%, respectively). The findings of this work provide guidance for assessing the potential of using recycled TPU/CNT nanocomposites for 3D printing strain sensors for a wide range of human motions.

References

1.
Beaman
,
J. J.
,
Bourell
,
D. L.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110812
.
2.
Mishra
,
V.
,
Negi
,
S.
,
Kar
,
S.
,
Sharma
,
A. K.
,
Rajbahadur
,
Y. N. K.
, and
Kumar
,
A.
,
2022
, “
Recent Advances in Fused Deposition Modeling Based Additive Manufacturing of Thermoplastic Composite Structures: A Review
,”
J. Thermoplast. Compos. Mater.
,
36
(
7
), pp.
1
39
.
3.
Fico
,
D.
,
Rizzo
,
D.
,
Casciaro
,
R.
, and
Corcione
,
C. E.
,
2022
, “
A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials
,”
Polymers
,
14
(
3
), p.
465
.
4.
Madhu
,
N. R.
,
Erfani
,
H.
,
Jadoun
,
S.
,
Amir
,
M.
,
Thiagarajan
,
Y.
, and
Chauhan
,
N. P. S.
,
2022
, “
Fused Deposition Modelling Approach Using 3D Printing and Recycled Industrial Materials for a Sustainable Environment: A Review
,”
Int. J. Adv. Manuf. Technol.
,
122
(
5–6
), pp.
2125
2138
.
5.
Van de Voorde
,
B.
,
Katalagarianakis
,
A.
,
Huysman
,
S.
,
Toncheva
,
A.
,
Raquez
,
J. M.
,
Duretek
,
I.
,
Holzer
,
C.
, et al
,
2022
, “
Effect of Extrusion and Fused Filament Fabrication Processing Parameters of Recycled Poly(Ethylene Terephthalate) on the Crystallinity and Mechanical Properties
,”
Addit. Manuf.
,
50
, p.
102518
.
6.
Owen
,
M. M.
,
Achukwu
,
E. O.
,
Hazizan
,
A. M.
,
Romli
,
A. Z.
, and
Ishiaku
,
U. S.
,
2022
, “
Characterization of Recycled and Virgin Polyethylene Terephthalate Composites Reinforced With Modified Kenaf Fibers for Automotive Application
,”
Polym. Compos.
,
43
(
11
), pp.
7724
7738
.
7.
Patel
,
S.
,
Park
,
H.
,
Bonato
,
P.
,
Chan
,
L.
, and
Rodgers
,
M.
,
2012
, “
A Review of Wearable Sensors and Systems With Application in Rehabilitation
,”
J. Neuroeng. Rehabil.
,
9
(
1
), p.
21
.
8.
Kalkal
,
A.
,
Kumar
,
S.
,
Kumar
,
P.
,
Pradhan
,
R.
,
Willander
,
M.
,
Packirisamy
,
G.
,
Kumar
,
S.
, and
Malhotra
,
B. D.
,
2021
, “
Recent Advances in 3D Printing Technologies for Wearable (Bio)sensors
,”
Addit. Manuf.
,
46
, p.
102088
.
9.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
10.
Garg
,
A.
,
Chalak
,
H. D.
,
Belarbi
,
M.-O.
,
Zenkour
,
A. M.
, and
Sahoo
,
R.
,
2021
, “
Estimation of Carbon Nanotubes and Their Applications as Reinforcing Composite Materials—An Engineering Review
,”
Compos. Struct.
,
272
, p.
114234
.
11.
Nurazzi
,
N. M.
,
Sabaruddin
,
F. A.
,
Harussani
,
M. M.
,
Kamarudin
,
S. H.
,
Rayung
,
M.
,
Asyraf
,
M. R. M.
,
Aisyah
,
H. A.
, et al
,
2021
, “
Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review
,”
Nanomaterials
,
11
(
9
), p.
2186
.
12.
Kumar
,
A.
,
Sharma
,
K.
, and
Dixit
,
A. R.
,
2021
, “
A Review on the Mechanical Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene
,”
Carbon Lett.
,
31
(
2
), pp.
149
165
.
13.
Choudhary
,
M.
,
Sharma
,
A.
,
Raj
,
S. A.
,
Sultan
,
M. T. H.
,
Hui
,
D.
, and
Shah
,
A. U. M.
,
2022
, “
Contemporary Review on Carbon Nanotube (CNT) Composites and Their Impact on Multifarious Applications
,”
Nanotechnol. Rev.
,
11
(
1
), pp.
2632
2660
.
14.
Alamusi
,
Hu
,
N.
,
Fukunaga
,
H.
,
Atobe
,
S.
,
Liu
,
Y.
, and
Li
,
J.
,
2011
, “
Piezoresistive Strain Sensors Made From Carbon Nanotubes Based Polymer Nanocomposites
,”
Sensors
,
11
(
11
), pp.
10691
10723
.
15.
Yamada
,
T.
,
Hayamizu
,
Y.
,
Yamamoto
,
Y.
,
Izadi-Najafabadi
,
A.
,
Futaba
,
D. N.
, and
Hata
,
K.
,
2011
, “
A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection
,”
Nat. Nanotechnol.
,
6
(
5
), pp.
296
301
.
16.
Ryu
,
S.
,
Lee
,
P.
,
Chou
,
J. B.
,
Xu
,
R.
,
Zhao
,
R.
,
Hart
,
A. J.
, and
Kim
,
S.-G.
,
2015
, “
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion
,”
ACS Nano
,
9
(
6
), pp.
5929
5936
.
17.
Selvan
,
N. T.
,
Eshwaran
,
S. B.
,
Das
,
A.
,
Stöckelhuber
,
K. W.
,
Wießner
,
S.
,
Pötschke
,
P.
,
Nando
,
G. B.
,
Chervanyov
,
A. I.
, and
Heinrich
,
G.
,
2016
, “
Piezoresistive Natural Rubber-Multiwall Carbon Nanotube Nanocomposite for Sensor Applications
,”
Sens. Actuator A: Phys.
,
239
, pp.
102
113
.
18.
Xue
,
L.
,
Wang
,
W.
,
Guo
,
Y.
,
Liu
,
G.
, and
Wan
,
P.
,
2017
, “
Flexible Polyaniline/Carbon Nanotube Nanocomposite Film-Based Electronic Gas Sensors
,”
Sens. Actuators B: Chem.
,
244
, pp.
47
53
.
19.
Arif
,
M. F.
,
Kumar
,
S.
,
Gupta
,
T. K.
, and
Varadarajan
,
K. M.
,
2018
, “
Strong Linear-Piezoresistive-Response of Carbon Nanostructures Reinforced Hyperelastic Polymer Nanocomposites
,”
Compos. Part A: Appl. Sci.
,
113
, pp.
141
149
.
20.
Liu
,
H.
,
Li
,
Q.
,
Zhang
,
S.
,
Yin
,
R.
,
Liu
,
X.
,
He
,
Y.
,
Dai
,
K.
, et al
,
2018
, “
Electrically Conductive Polymer Composites for Smart Flexible Strain Sensors: A Critical Review
,”
J. Mater. Chem. C
,
6
(
45
), pp.
12121
12141
.
21.
He
,
Z.
,
Byun
,
J.-H.
,
Zhou
,
G.
,
Park
,
B.-J.
,
Kim
,
T.-H.
,
Lee
,
S.-B.
,
Yi
,
J.-W.
,
Um
,
M.-K.
, and
Chou
,
T.-W.
,
2019
, “
Effect of MWCNT Content on the Mechanical and Strain-Sensing Performance of Thermoplastic Polyurethane Composite Fibers
,”
Carbon
,
146
, pp.
701
708
.
22.
Gnanasekaran
,
K.
,
Heijmans
,
T.
,
van Bennekom
,
S.
,
Woldhuis
,
H.
,
Wijnia
,
S.
,
de With
,
G.
, and
Friedrich
,
H.
,
2017
, “
3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling
,”
Appl. Mater. Today
,
9
, pp.
21
28
.
23.
Christ
,
J. F.
,
Aliheidari
,
N.
,
Ameli
,
A.
, and
Pötschke
,
P.
,
2017
, “
3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
,”
Mater. Des.
,
131
, pp.
394
401
.
24.
Kim
,
K.
,
Park
,
J.
,
Suh
,
J.-H.
,
Kim
,
M.
,
Jeong
,
Y.
, and
Park
,
I.
,
2017
, “
3D Printing of Multiaxial Force Sensors Using Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Filaments
,”
Sens. Actuators A: Phys.
,
263
, pp.
493
500
.
25.
Christ
,
J. F.
,
Aliheidari
,
N.
,
Pötschke
,
P.
, and
Ameli
,
A.
,
2019
, “
Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
,”
Polymers
,
11
(
1
), p.
11
.
26.
Stan
,
F.
,
Stanciu
,
N. V.
,
Constantinescu
,
A. M.
, and
Fetecau
,
C.
,
2021
, “
3D Printing of Flexible and Stretchable Parts Using Multiwall Carbon Nanotube/Polyester-Based Thermoplastic Polyurethane
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051002
.
27.
Gao
,
J. L.
,
Liu
,
Y. H.
, and
Li
,
D. M.
,
2011
, “
Preparation and Properties of Recycled Polypropylene/Carbon Nanotube Composites
,”
Adv. Mater. Res.
,
279
, pp.
106
110
.
28.
Zhang
,
J.
,
Panwar
,
A.
,
Bello
,
D.
,
Jozokos
,
T.
,
Isaacs
,
J. A.
,
Barry
,
C.
, and
Mead
,
J.
,
2016
, “
The Effects of Recycling on the Properties of Carbon Nanotube-Filled Polypropylene Composites and Worker Exposures
,”
Environ. Sci.
,
3
(
2
), pp.
409
417
.
29.
Stan
,
F.
,
Sandu
,
I. L.
,
Fetecau
,
C.
, and
Rosculet
,
R. T.
,
2017
, “
Effect of Reprocessing on the Rheological, Electrical and Mechanical Properties of Polypropylene/Carbon Nanotube Composites
,”
ASME J. Micro Nanomanuf.
,
5
(
2
), p.
021005
.
30.
Stan
,
F.
,
Stanciu
,
N.-V.
,
Fetecau
,
C.
, and
Sandu
,
I.-L.
,
2019
, “
Mechanical Recycling of Low-Density Polyethylene/Carbon Nanotube Composites and Its Effect on Material Properties
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091004
.
31.
Svensson
,
S.
,
Åkesson
,
D.
, and
Bohlén
,
M.
,
2020
, “
Reprocessing of High Density Polyethylene Reinforced With Carbon Nanotubes
,”
J. Polym. Environ.
,
28
(
7
), pp.
1967
1973
.
32.
Stan
,
F.
,
Sandu
,
I.-L.
,
Constantinescu
,
A.-M.
,
Stanciu
,
N.-V.
, and
Fetecau
,
C.
,
2022
, “
The Influence of Carbon Nanotubes and Reprocessing on the Morphology and Properties of High-Density Polyethylene/Carbon Nanotube Composites
,”
ASME J. Manuf. Sci. Eng.
,
144
(
4
), p.
041011
.
33.
Nanocyl
,
2016
, “
Technical Data Sheet: Plasticyl™ TPU1001
,” https://www.nanocyl.com,
Accessed May 10, 2016.
34.
Lubrizol
, “
Technical Data Sheet: Type: ESTANE® 54610
,” https://www.lubrizol.com, Accessed May 10, 2016.
35.
ISO 527-2
,
2012
, “
Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics
,” International Organization for Standardization, Geneva, Switzerland, https://www.iso.org/standard/56046.html, Accessed April 8, 2020.
36.
Stan
,
F.
,
Rosculet
,
R. T.
, and
Fetecau
,
C.
,
2019
, “
Direct Current Method With Reversal Polarity for Electrical Conductivity Measurement of TPU/MWCNT Composites
,”
Measurement
,
136
, pp.
345
355
.
37.
Qiu
,
A.
,
Aakyiir
,
M.
,
Wang
,
R.
,
Yang
,
Z.
,
Umer
,
A.
,
Lee
,
I.
,
Hsua
,
H.-Y.
, and
Ma
,
J.
,
2020
, “
Stretchable and Calibratable Graphene Sensors for Accurate Strain Measurement
,”
Mater. Adv.
,
1
(
2
), pp.
235
243
.
38.
Wang
,
S.
,
Capoen
,
L.
,
D'hooge
,
D. R.
, and
Cardon
,
L.
,
2018
, “
Can the Melt Flow Index Be Used to Predict the Success of Fused Deposition Modelling of Commercial Poly(Lactic Acid) Filaments Into 3D Printed Materials?
,”
Plast. Rubber Compos.
,
47
(
1
), pp.
9
16
.
39.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes I. Process Design and Modeling
,”
Rapid Prototyp. J.
,
20
(
3
), pp.
192
204
.
40.
Ferg
,
E. E.
, and
Bolo
,
L. L.
,
2013
, “
A Correlation Between the Variable Melt Flow Index and the Molecular Mass Distribution of Virgin and Recycled Polypropylene Used in the Manufacturing of Battery Cases
,”
Polym. Test.
,
32
(
8
), pp.
1452
1459
.
41.
Mora
,
A.
,
Verma
,
P.
, and
Kumar
,
S.
,
2020
, “
Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling
,”
Compos. B: Eng.
,
183
, p.
107600
.
42.
Stauffer
,
D.
, and
Aharony
,
A.
,
1992
,
Introduction to Percolation Theory: Second Edition
,
Taylor & Francis
,
London, UK
.
43.
Kim
,
K.
,
Lee
,
J.
,
Jo
,
E.
,
Sim
,
S.
, and
Kim
,
J.
,
2020
, “
Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection
,”
ACS Appl. Nano Mater.
,
3
(
11
), pp.
11408
11415
.
You do not currently have access to this content.