Abstract

Metal additive manufacturing (AM) has been receiving unprecedented attention for its transformational role in extending the AM materials from polymers to various metals. However, various quality issues, especially porosity, significantly impacts the mechanical properties and fatigue life of the final products, which imposes barriers for the widespread adoption of metal AM processes. In this study, we use the deep learning (DL) techniques to comprehensively investigate the relationships between pore microstructure and processing parameters. Specifically, a novel hybrid deep generative prediction network (HDGPN) that leverages both variational autoencoder and generative adversarial network is proposed to characterize the complex pore microstructure with in-depth representations and predict pore morphology under arbitrary processing parameters. By visualizing the predicted pore morphology, the complicated interaction dynamics between the processing parameters and pore microstructure are directly revealed, which may guide the optimization of metal AM manufacturing processes to fabricate defect-free products. A case study of a selective laser melting (SLM) process is conducted to validate the proposed modeling and prediction framework.

References

1.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
, Vol.
17
,
Springer
,
Cham, Switzerland
.
2.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
3.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
4.
DebRoy
,
T.
,
Wei
,
H.
,
Zuback
,
J.
,
Mukherjee
,
T.
,
Elmer
,
J.
,
Milewski
,
J.
,
Beese
,
A. M.
,
Wilson-Heid
,
A. d.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components–Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
5.
Sadeghi
,
E.
,
Karimi
,
P.
,
Esmaeilizadeh
,
R.
,
Berto
,
F.
,
Shao
,
S.
,
Moverare
,
J.
,
Toyserkani
,
E.
, and
Shamsaei
,
N.
,
2023
, “
A State-of-the-Art Review on Fatigue Performance of Powder Bed Fusion-Built Alloy 718
,”
Prog. Mater. Sci.
,
133
, p.
101066
.
6.
Merot
,
P.
,
Morel
,
F.
,
Pessard
,
E.
,
Mayorga
,
L. G.
,
Buttin
,
P.
, and
Baffie
,
T.
,
2022
, “
Fatigue Strength and Life Assessment of L-pbf 316l Stainless Steel Showing Process and Corrosion Related Defects
,”
Eng. Fract. Mech.
,
276
(
Part B
), p.
108883
.
7.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in ti–6al–4v Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
.
8.
Dilip
,
J.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6al-4v Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
.
9.
Kim
,
F.
,
Moylan
,
S.
,
Garboczi
,
E.
, and
Slotwinski
,
J.
,
2017
, “
Investigation of Pore Structure in Cobalt Chrome Additively Manufactured Parts Using X-Ray Computed Tomography and Three-Dimensional Image Analysis
,”
Addit. Manuf.
,
17
, pp.
23
38
.
10.
Maamoun
,
A. H.
,
Xue
,
Y. F.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2018
, “
Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy
,”
Materials
,
11
(
12
), p.
2343
.
11.
Fayazfar
,
H.
,
Salarian
,
M.
,
Rogalsky
,
A.
,
Sarker
,
D.
,
Russo
,
P.
,
Paserin
,
V.
, and
Toyserkani
,
E.
,
2018
, “
A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties
,”
Mater. Des.
,
144
, pp.
98
128
.
12.
Choo
,
H.
,
Sham
,
K.-L.
,
Bohling
,
J.
,
Ngo
,
A.
,
Xiao
,
X.
,
Ren
,
Y.
,
Depond
,
P. J.
,
Matthews
,
M. J.
, and
Garlea
,
E.
,
2019
, “
Effect of Laser Power on Defect, Texture, and Microstructure of a Laser Powder Bed Fusion Processed 316l Stainless Steel
,”
Mater. Des.
,
164
, p.
107534
.
13.
Gordon
,
J. V.
,
Narra
,
S. P.
,
Cunningham
,
R. W.
,
Liu
,
H.
,
Chen
,
H.
,
Suter
,
R. M.
,
Beuth
,
J. L.
, and
Rollett
,
A. D.
,
2020
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101552
.
14.
Xie
,
D.
, and
Dittmeyer
,
R.
,
2021
, “
Correlations of Laser Scanning Parameters and Porous Structure Properties of Permeable Materials Made by Laser-Beam Powder-Bed Fusion
,”
Addit. Manuf.
,
47
, p.
102261
.
15.
Wang
,
T.
,
Wang
,
Y.
,
Chen
,
C.
, and
Zhu
,
H.
,
2021
, “
Relationships Between the Characteristics of Porosity, Melt Pool and Process Parameters in Laser Powder Bed Fusion Alzn Alloy
,”
J. Manuf. Process.
,
68
(
Part A
), pp.
1236
1244
.
16.
Poudel
,
A.
,
Yasin
,
M. S.
,
Ye
,
J.
,
Liu
,
J.
,
Vinel
,
A.
,
Shao
,
S.
, and
Shamsaei
,
N.
,
2022
, “
Feature-Based Volumetric Defect Classification in Metal Additive Manufacturing
,”
Nat. Commun.
,
13
(
1
), p.
6369
.
17.
Tapia
,
G.
,
Elwany
,
A.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. Special Issue on Modeling & Simulation for Additive Manufacturing.
18.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
19.
Kappes
,
B.
,
Moorthy
,
S.
,
Drake
,
D.
,
Geerlings
,
H.
, and
Stebner
,
A.
,
2018
, “
Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718
,”
Superalloy 718 and Derivatives Conference
,
Pittsburgh, PA
,
June 3–6
, pp.
595
610
.
20.
Fathizadan
,
S.
,
Ju
,
F.
, and
Lu
,
Y.
,
2021
, “
Deep Representation Learning for Process Variation Management in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
42
, p.
101961
.
21.
Kwon
,
O.
,
Kim
,
H. G.
,
Ham
,
M. J.
,
Kim
,
W.
,
Kim
,
G.-H.
,
Cho
,
J.-H.
,
Kim
,
N. I.
, and
Kim
,
K.
,
2020
, “
A Deep Neural Network for Classification of Melt-Pool Images in Metal Additive Manufacturing
,”
J. Intel. Manuf.
,
31
(
2
), pp.
375
386
.
22.
Pandey
,
G.
, and
Dukkipati
,
A.
,
2017
, “
Variational Methods for Conditional Multimodal Deep Learning
,”
International Joint Conference on Neural Networks (IJCNN)
,
Anchorage, AKSA
,
May 14–19
, pp.
308
315
.
23.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” arXiv preprint arXiv:1411.1784.
24.
Odena
,
A.
,
Olah
,
C.
, and
Shlens
,
J.
,
2017
, “
Conditional Image Synthesis With Auxiliary Classifier Gans
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
2642
2651
.
25.
Rezagholiradeh
,
M.
, and
Haidar
,
M. A.
,
2018
, “
Reg-gan: Semi-Supervised Learning Based on Generative Adversarial Networks for Regression
,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Calgary, Alberta, Canada
,
Apr. 15–20
, IEEE, pp.
2806
2810
.
26.
Olmschenk
,
G.
,
Chen
,
J.
,
Tang
,
H.
, and
Zhu
,
Z.
,
2019
, “
Dense Crowd Counting Convolutional Neural Networks With Minimal Data Using Semi-Supervised Dual-Goal Generative Adversarial Networks
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
.
27.
Ding
,
X.
,
Wang
,
Y.
,
Xu
,
Z.
,
Welch
,
W. J.
, and
Wang
,
Z. J.
,
2021
, “
Ccgan: Continuous Conditional Generative Adversarial Networks for Image Generation
,”
International Conference on Learning Representations
,
Virtual Online
,
May 3–7
.
28.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
29.
Sola
,
A.
, and
Nouri
,
A.
,
2019
, “
Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion
,”
J. Adv. Manuf. Process.
,
1
(
3
), p.
e10021
.
30.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,”
arXiv preprint arXiv:1312.6114
.
31.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
27
.
32.
Arjovsky
,
M.
, and
Bottou
,
L.
,
2017
, “
Towards Principled Methods for Training Generative Adversarial Networks
,” arXiv preprint arXiv:1701.04862.
33.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Gan
,”
arXiv:1701.07875
.
34.
Gulrajani
,
I.
,
Ahmed
,
F.
,
Arjovsky
,
M.
,
Dumoulin
,
V.
, and
Courville
,
A.
,
2017
, “
Improved Training of Wasserstein Gans
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
35.
Larsen
,
A. B. L.
,
Sønderby
,
S. K.
,
Larochelle
,
H.
, and
Winther
,
O.
,
2016
, “
Autoencoding Beyond Pixels Using a Learned Similarity Metric
,”
International Conference on Machine Learning
,
New York
,
June 19–24
, PMLR, pp.
1558
1566
.
36.
Makhzani
,
A.
,
Shlens
,
J.
,
Jaitly
,
N.
,
Goodfellow
,
I.
, and
Frey
,
B.
,
2015
, “
Adversarial Autoencoders
,”
arXiv preprint arXiv:1511.05644
.
37.
Bao
,
J.
,
Chen
,
D.
,
Wen
,
F.
,
Li
,
H.
, and
Hua
,
G.
,
2017
, “
Cvae-Gan: Fine-Grained Image Generation Through Asymmetric Training
,”
IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
.
38.
Ding
,
K.
,
Ma
,
K.
,
Wang
,
S.
, and
Simoncelli
,
E. P.
,
2020
, “
Image Quality Assessment: Unifying Structure and Texture Similarity
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
44
(
5
), pp.
2567
2581
.
39.
Gatys
,
L. A.
,
Ecker
,
A. S.
, and
Bethge
,
M.
,
2016
, “
Image Style Transfer Using Convolutional Neural Networks
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
2414
2423
.
40.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C.
,
Glorot
,
X.
,
Botvinick
,
M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2016
, “
Beta-Vae: Learning Basic Visual Concepts With a Constrained Variational Framework
,”
International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
41.
Xu
,
H.
,
Dikin
,
D. A.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.
42.
Bostanabad
,
R.
,
Bui
,
A. T.
,
Xie
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
Stochastic Microstructure Characterization and Reconstruction Via Supervised Learning
,”
Acta. Mater.
,
103
, pp.
89
102
.
43.
Li
,
X.
,
Zhang
,
Y.
,
Zhao
,
H.
,
Burkhart
,
C.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2018
, “
A Transfer Learning Approach for Microstructure Reconstruction and Structure-Property Predictions
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.
44.
Gostick
,
J. T.
,
Khan
,
Z. A.
,
Tranter
,
T. G.
,
Kok
,
M. D.
,
Agnaou
,
M.
,
Sadeghi
,
M.
, and
Jervis
,
R.
,
2019
, “
Porespy: A Python Toolkit for Quantitative Analysis of Porous Media Images
,”
J. Open Source Softw.
,
4
(
37
), p.
1296
.
You do not currently have access to this content.