Abstract

Hybrid manufacturing technology has enabled manufacturers to combine advantages of mainly subtractive and additive manufacturing technologies. A single machine supports producing products with complex geometry, at high quality, and with a high degree of automation. To benefit from these advantages, decisions taken in the process planning stage of such a sophisticated manufacturing system should be optimized. The objective of this paper is to determine the optimal process plan considering both the engineering and manufacturing aspects of the hybrid technology. A comprehensive process planning model is proposed. The model specifies the optimal sequence of additive and subtractive features that minimizes the production cycle time. In addition, the model sets the optimal part orientations such that the time needed for building support structures, performing post-processing and inspection operations, changing cutting tools and printing nozzles, and unclamping the part is minimized. The model is comprehensive as it considers productive and non-productive times, precedence, technological, quality, and manufacturing restrictions imposed on hybrid manufacturing systems. The proposed model is nonlinear; due to this nonlinearity, the model is intractable. A linearization scheme is applied to formulate an equivalent linear model that is solvable to optimality by commercial solvers. Case studies on test and industrial parts are provided to evaluate the computational performance of the proposed model. Integrating the proposed model in hybrid manufacturing (HM) systems ensures adopting the HM technology in its optimal direction. HM technology is an enabler of establishing a smart manufacturing system which is one of the pillars of Industry 4.0.

References

1.
Kusiak
,
A.
,
2020
, “
Smart Manufacturing
,”
Int. J. Prod. Res.
,
56
(
1–2
), pp.
508
517
.
2.
Bloom
,
D.
, and
Prettner
,
K.
,
2020
, “
The Macroeconomic Effects of Automation and the Role of COVID-19 in Reinforcing Their Dynamics
,”
VOX CEPR Policy Portal
,
25
.
3.
Phuyal
,
S.
,
Bista
,
D.
, and
Challenges
,
B. R.
,
2020
, “
Opportunities and Future Directions of Smart Manufacturing: A State of Art Review
,”
Sustain. Futures
,
2
, p.
100023
.
4.
Tuptuk
,
N.
, and
Hailes
,
S.
,
2018
, “
Security of Smart Manufacturing Systems
,”
J. Manuf. Syst.
,
47
, pp.
93
106
.
5.
Mittal
,
S.
,
Khan
,
M. A.
,
Romero
,
D.
, and
Wuest
,
T.
,
2019
, “
Smart Manufacturing: Characteristics, Technologies and Enabling Factors
,”
Proc. Instit. Mech. Eng. B: J. Eng. Manuf.
,
233
(
5
), pp.
1342
1361
.
6.
Cortina
,
M.
,
Arrizubieta
,
J. I.
,
Ruiz
,
J. E.
,
Ukar
,
E.
, and
Lamikiz
,
A.
,
2018
, “
Latest Developments in Industrial Hybrid Machine Tools That Combine Additive and Subtractive Operations
,”
Materials
,
11
(
12
), p.
2583
.
7.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Clean. Prod.
,
137
(20), pp.
1573
1587
.
8.
Westerweel
,
B.
,
Basten
,
R. J.
, and
Le Houtum
,
G. J.
,
2018
, “
Traditional or Additive Manufacturing? Assessing Component Design Options Through Lifecycle Cost Analysis
,”
Eur. J. Oper. Res.
,
270
(
2
), pp.
570
585
.
9.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components
,”
J. Clean. Prod.
,
135
, pp.
1559
1570
.
10.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Liang
,
H.
,
2013
, “
Additive Manufacturing and its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
11.
Abdulhameed
,
O.
,
Al-Ahmari
,
A.
,
Ameen
,
W.
, and
Mian
,
S. H.
,
2019
, “
Additive Manufacturing: Challenges, Trends, and Applications
,”
Adv. Mech. Eng.
,
11
(
2
), pp.
1
27
.
12.
Arbabian
,
M. E.
, and
Wagner
,
M. R.
,
2020
, “
The Impact of 3D Printing on Manufacturer–Retailer Supply Chains
,”
Eur. J. Oper. Res.
,
285
(
2
), pp.
538
552
.
13.
Azab
,
A.
, and
ElMaraghy
,
H.
,
2007
, “
Sequential Process Planning: A Hybrid Optimal Macro-Level Approach
,”
J. Manuf. Syst.
,
126
(
3–4
), pp.
147
160
.
14.
Moroni
,
G.
,
Syam
,
W. P.
, and
Petrò
,
S.
,
2015
, “
Functionality-Based Part Orientation for Additive Manufacturing
,”
Procedia CIRP.
,
36
, pp.
217
222
.
15.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2013
, “
A Review of Hybrid Manufacturing Processes–State of the Art and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
596
615
.
16.
Lorenz
,
K. A.
,
Jones
,
J. B.
,
Wimpenny
,
D. I.
, and
Jackson
,
M. R.
,
2010
, “
A Review of Hybrid Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Conference
, Austin, TX, Aug. 9–11, pp.
96
108
.
17.
Stavropoulos
,
P.
,
Foteinopoulos
,
P.
,
Papacharalampopoulos
,
A.
, and
Bikas
,
H.
,
2018
, “
Addressing the Challenges for the Industrial Application of Additive Manufacturing: Towards a Hybrid Solution
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
3
), pp.
157
168
.
18.
Ren
,
L.
,
Sparks
,
T.
,
Ruan
,
J.
, and
Liou
,
F.
,
2010
, “
Integrated Process Planning for a Multiaxis Hybrid Manufacturing System
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021006
.
19.
Karunakaran
,
K. P.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2010
, “
Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
26
(
5
), pp.
490
499
.
20.
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoët
,
J. Y.
,
2014
, “
A New DFM Approach to Combine Machining and Additive Manufacturing
,”
Comput. Ind.
,
62
(
7
), pp.
684
692
.
21.
Zhu
,
Z.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2013
, “
The Development of a Novel Process Planning Algorithm For an Unconstrained Hybrid Manufacturing Process
,”
J. Manuf. Process.
,
15
(
4
), pp.
404
413
.
22.
Zhu
,
Z.
,
Dhokia
,
V.
,
Newman
,
S. T.
, and
Nassehi
,
A.
,
2014
, “
Application of a Hybrid Process for High Precision Manufacture of Difficult to Machine Prismatic Parts
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
1115
1132
.
23.
Newman
,
S. T.
,
Zhu
,
Z.
,
Dhokia
,
V.
, and
Shokrani
,
A.
,
2015
, “
Process Planning for Additive and Subtractive Manufacturing Technologies
,”
CIRP Ann.
,
64
(
1
), pp.
467
470
.
24.
Zhu
,
Z.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2018
, “
A Novel Decision-Making Logic for Hybrid Manufacture of Prismatic Components Based on Existing Parts
,”
J. Intell. Manuf.
,
28
(
1
), pp.
131
148
.
25.
Le
,
V. T.
,
Paris
,
H.
, and
Mandil
,
G.
,
2018
, “
Process Planning for Combined Additive and Subtractive Manufacturing Technologies in a Remanufacturing Context
,”
J. Manuf. Syst.
,
44
, pp.
243
254
.
26.
Le
,
V. T.
,
Paris
,
H.
, and
Mandil
,
G.
,
2018
, “
The Development of a Strategy For Direct Part Reuse Using Additive And Subtractive Manufacturing Technologies
,”
Addit. Manuf.
,
22
, pp.
687
699
.
27.
Behandish
,
M.
,
Nelaturi
,
S.
, and
de Kleer
,
J.
,
2018
, “
Automated Process Planning for Hybrid Manufacturing
,”
Comput. Aided Des.
,
102
, pp.
115
127
.
28.
ElMaraghy
,
H.
, and
Moussa
,
M.
,
2019
, “
Optimal Platform Design and Process Plan for Managing Variety Using Hybrid Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
68
, pp.
443
446
.
29.
Thompson
,
M. K.
,
Moroni
,
C.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
, and
Ahuja
,
B.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
30.
Stavropoulos
,
P.
,
Bikas
,
H.
,
Avram
,
O.
, and
Valente
,
A.
,
2020
, “
Hybrid Subtractive–Additive Manufacturing Processes for High Value-Added Metal Components
,”
Int. J. Adv. Manuf. Technol.
,
111
(
3–4
), pp.
645
655
.
31.
Xiao
,
X.
, and
Joshi
,
S.
, 2020, “
Decomposition and Sequencing for a 5-Axis Hybrid Manufacturing Process
,”
Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Advanced Materials Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation, Erie, PA, June 22–26.
32.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Larkin
,
N.
, and
van Duin
,
S.
,
2015
, “
Multi-direction Slicing of STL Models for Robotic Wire-Feed Additive Manufacturing
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium (Vol. 1059), Austin, TX, Aug. 10–12.
33.
Isa
,
M. A.
, and
Lazoglu
,
I.
,
2019
, “
Five-Axis Additive Manufacturing of Freeform Models Through Buildup of Transition Layers
,”
J. Manuf. Syst.
,
50
, pp.
69
80
.
34.
Xiao
,
X.
, and
Joshi
,
S.
,
2020
, “
Process Planning for Five-Axis Support Free Additive Manufacturing
,”
Addit. Manuf.
, 36, p.
101569
.
35.
Stavropoulos
,
P.
,
Souflas
,
T.
, and
Bikas
,
H.
,
2021
, “
Hybrid Manufacturing Processes: an Experimental Machinability Investigation of DED Produced Parts
,”
Procedia CIRP
,
101
, pp.
218
221
.
36.
Souflas
,
T.
,
Bikas
,
H.
,
Ghassempouri
,
M.
,
Salmi
,
A.
,
Atzeni
,
E.
,
Saboori
,
A.
,
Brugnetti
,
I.
,
Valente
,
A.
,
Mazzucato
,
F.
, and
Stavropoulos
,
P.
,
2022
, “
A Comparative Study of dry and Cryogenic Milling for Directed Energy Deposited IN718 Components: Effect on Process and Part Quality
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1–2
), pp.
745
758
.
37.
Osman
,
H.
, and
Baki
,
M. F.
,
2014
, “
Balancing Transfer Lines Using Benders de- 878 Composition and Ant Colony Optimisation Techniques
,”
Int. J. Prod. Res.
,
52
(
5
), pp.
1334
1350
.
39.
Boivie
,
K.
,
Karlsen
,
R.
, and
Ystgaard
,
P.
,
2012
, “
The Concept of Hybrid Manufacturing for High Performance Parts
,”
South Afr. J. Ind. Eng.
,
23
(
2
), pp.
106
115
.
40.
Kinney
,
M.
, and
Raiborn
,
C.
,
2012
, Cost Accounting Principles, 9th ed., Cengage Learning, New Delhi.
41.
Yaghi
,
A.
,
Ayvar-Soberanis
,
S.
,
Moturu
,
S.
,
Bilkhu
,
R.
, and
Afazov
,
S.
,
2019
, “
Design Against Distortion for Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
224
235
.
42.
Glover
,
F.
, and
Woolsey
,
E.
,
1974
, “
Converting the 0–1 Polynomial Programming Problem to a 0–1 Linear Program
,”
Oper. Res. Lett.
,
22
(
1
), pp.
180
182
.
You do not currently have access to this content.