Abstract

Selective laser melting (SLM) has gained prominence in the manufacturing industry for its ability to produce lightweight components. As the raw material used is in powder form, the stochastic nature of the powder distribution influences the powder layer thickness and affects the final build quality. In this paper, a multi-layer multi-track simulation study is conducted to investigate the effect of stochastic powder distribution on the layer thickness and plastic strain in a printed geometry. A faster simulation approach is employed to simulate multiple layers. First, the powder distribution and the melt layer thickness of the first layer are obtained from discrete element method (DEM) and computational fluid dynamics (CFD) simulations respectively. Next, the melt layer thickness of the first layer is used as an input to the finite element (FE) based structural mechanics solver to predict the deformation and layer thickness of subsequent layers. Two nominal layer thicknesses 67.4 μm and 20 μm were considered. Two particle size distribution (PSD) configurations and two scanning strategies were tested. The results showed that variation in PSD and scanning strategy leads to variation in layer thickness which in turn leads to variation in the plastic strain that is known to drive the deformation. However, the nominal layer thickness of 20 μm was found to be less influenced by the PSD configuration. The proposed simulation approach and the insights achieved can be used as inputs in the part-scale simulations for geometric robustness evaluation in the early design stages of SLM products.

References

1.
Tan
,
J. H.
,
Wong
,
W. L. E.
, and
Dalgarno
,
K. W.
,
2017
, “
An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
228
255
.
2.
Yadroitsev
,
I.
,
Yadroitsava
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2012
, “
Factor Analysis of Selective Laser Melting Process Parameters and Geometrical Characteristics of Synthesized Single Tracks
,”
Rapid. Prototyp. J.
,
18
(
3
), pp.
201
208
.
3.
Jacob
,
G.
,
Jacob
,
G.
,
Brown
,
C. U.
, and
Donmez
,
A.
,
2018
,
The Influence of Spreading Metal Powders With Different Particle Size Distributions on the Powder Bed Density in Laser-Based Powder Bed Fusion Processes.
US Department of Commerce, National Institute of Standards and Technology
.
4.
Mussatto
,
A.
,
Groarke
,
R.
,
O’Neill
,
A.
,
Obeidi
,
M. A.
,
Delaure
,
Y.
, and
Brabazon
,
D.
,
2021
, “
Influences of Powder Morphology and Spreading Parameters on the Powder Bed Topography Uniformity in Powder Bed Fusion Metal Additive Manufacturing
,”
Addit. Manuf.
,
38
, p.
101807
.
5.
Cao
,
L.
,
2019
, “
Numerical Simulation of the Impact of Laying Powder on Selective Laser Melting Single-Pass Formation
,”
Int. J. Heat Mass. Transfer.
,
141
, pp.
1036
1048
.
6.
Cao
,
L.
,
2020
, “
Mesoscopic-Scale Numerical Simulation Including the Influence of Process Parameters on Slm Single-Layer Multi-pass Formation
,”
Metall. Mater. Trans. A.
,
51
(
8
), pp.
4130
4145
.
7.
Chen
,
Q.
,
Liang
,
X.
,
Hayduke
,
D.
,
Liu
,
J.
,
Cheng
,
L.
,
Oskin
,
J.
,
Whitmore
,
R.
, and
To
,
A. C.
,
2019
, “
An Inherent Strain Based Multiscale Modeling Framework for Simulating Part-Scale Residual Deformation for Direct Metal Laser Sintering
,”
Addit. Manuf.
,
28
, pp.
406
418
.
8.
Sagar
,
V. R.
,
Lorin
,
S.
,
Göhl
,
J.
,
Quist
,
J.
,
Jareteg
,
K.
,
Cromvik
,
C.
,
Mark
,
A.
,
Edelvik
,
F.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
A Simulation Study on the Effect of Particle Size Distribution on the Printed Geometry in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
144
(
5
), p.
051006
.
9.
Alvarez
,
P.
,
Ecenarro
,
J.
,
Setien
,
I.
,
Sebastian
,
M.
,
Echeverria
,
A.
, and
Eciolaza
,
L.
,
2016
, “
Computationally Efficient Distortion Prediction in Powder Bed Fusion Additive Manufacturing
,”
Int. J. Eng. Res. Sci
,
2
(
10
), pp.
39
46
.
10.
Li
,
C.
,
Guo
,
Y.
,
Fang
,
X.
, and
Fang
,
F.
,
2018
, “
A Scalable Predictive Model and Validation for Residual Stress and Distortion in Selective Laser Melting
,”
CIRP. Ann.
,
67
(
1
), pp.
249
252
.
11.
Bartlett
,
J. L.
, and
Li
,
X.
,
2019
, “
An Overview of Residual Stresses in Metal Powder Bed Fusion
,”
Addit. Manuf.
,
27
, pp.
131
149
.
12.
Spierings
,
A. B.
,
Voegtlin
,
M.
,
Bauer
,
T.
, and
Wegener
,
K.
,
2016
, “
Powder Flowability Characterisation Methodology for Powder-Bed-Based Metal Additive Manufacturing
,”
Prog. Addit. Manuf.
,
1
(
1
), pp.
9
20
.
13.
Dawes
,
J.
,
Bowerman
,
R.
, and
Trepleton
,
R.
,
2015
, “
Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain
,”
Johnson Matthey Technol. Rev.
,
59
(
3
), pp.
243
256
.
14.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
,
Upper Saddle River, NJ
, pp.
13
40
.
15.
Gouge
,
M.
, and
Michaleris
,
P.
,
2017
,
Thermo-Mechanical Modeling of Additive Manufacturing
,
Butterworth-Heinemann
,
Cambridge, UK
, p.
27
.
16.
Lorin
,
S.
,
Madrid
,
J.
,
Söderberg
,
R.
, and
Wärmefjord
,
K.
,
2022
, “
A New Heat Source Model for Keyhole Mode Laser Welding
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
011004
.
17.
Simo
,
J. C.
, and
Hughes
,
T. J.
,
2006
,
Computational Inelasticity
, Vol.
7
,
Springer Science & Business Media
,
New York
, pp.
71
110
.
18.
Han
,
W.
, and
Reddy
,
B. D.
,
2013
,
Plasticity: Mathematical Theory and Numerical Analysis
, Vol.
9
,
Springer Science & Business Media
,
New York
, pp.
15
121
.
19.
Spierings
,
A. B.
, and
Levy
,
G.
,
2009
, “
Comparison of Density of Stainless Steel 316l Parts Produced With Selective Laser Melting Using Different Powder Grades
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
, pp.
342
353
.
20.
Mahmoodkhani
,
Y.
,
Ali
,
U.
,
Imani Shahabad
,
S.
,
Rani Kasinathan
,
A.
,
Esmaeilizadeh
,
R.
,
Keshavarzkermani
,
A.
,
Marzbanrad
,
E.
, and
Toyserkani
,
E.
,
2019
, “
On the Measurement of Effective Powder Layer Thickness in Laser Powder-Bed Fusion Additive Manufacturing of Metals
,”
Prog. Addit. Manuf.
,
4
(
2
), pp.
109
116
.
21.
Samal
,
P.
, and
Newkirk
,
J.
,
2015
, “
Alloy Classification and Compositions
,”
ASM Handbook
,
7
, pp.
415
420
.
22.
Ahn
,
I. H.
,
2019
, “
Determination of a Process Window With Consideration of Effective Layer Thickness in SLM Process
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4181
4191
.
23.
Liang
,
X.
,
Cheng
,
L.
,
Chen
,
Q.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
A Modified Method for Estimating Inherent Strains From Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled Structures Fabricated by Directed Energy Deposition
,”
Addit. Manuf.
,
23
, pp.
471
486
.
24.
Bugatti
,
M.
, and
Semeraro
,
Q.
,
2018
, “
Limitations of the Inherent Strain Method in Simulating Powder Bed Fusion Processes
,”
Addit. Manuf.
,
23
, pp.
329
346
.
25.
Promoppatum
,
P.
, and
Uthaisangsuk
,
V.
,
2021
, “
Part Scale Estimation of Residual Stress Development in Laser Powder Bed Fusion Additive Manufacturing of Inconel 718
,”
Finite Elem. Anal. Design
,
189
, p.
103528
.
26.
Takezawa
,
A.
,
To
,
A. C.
,
Chen
,
Q.
,
Liang
,
X.
,
Dugast
,
F.
,
Zhang
,
X.
, and
Kitamura
,
M.
,
2020
, “
Sensitivity Analysis and Lattice Density Optimization for Sequential Inherent Strain Method Used in Additive Manufacturing Process
,”
Comput. Methods. Appl. Mech. Eng.
,
370
, p.
113231
.
27.
Lyu
,
D.
,
Hu
,
W.
,
Ren
,
B.
,
Pan
,
X.
, and
Wu
,
C.
,
2020
, “
Numerical Prediction of Residual Deformation and Failure for Powder Bed Fusion Additive Manufacturing of Metal Parts
,”
J. Mech.
,
36
(
5
), pp.
623
636
.
28.
Leicht
,
A.
,
Fischer
,
M.
,
Klement
,
U.
,
Nyborg
,
L.
, and
Hryha
,
E.
,
2021
, “
Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316l Through Increased Layer Thickness
,”
J. Mater. Eng. Perform.
,
30
(
1
), pp.
575
584
.
You do not currently have access to this content.