Abstract

Accumulated heat input during layer deposition causes high residual stress in the Wire-Arc Additive Manufacturing (WAAM) components. The developed residual stress results in defects like distortion, delamination, cracks, and low fatigue life. To deal with such engineering problems, numerical methods have always been required. It gives an insight into the system that can be used for real-world applications. Consequently, a sequentially coupled finite element model has been developed to simulate the thermal–structural behavior of the feedstock during and after deposition in the WAAM process. Precisely, a novel multi-level layer-wise heat input approach characterized by four different stages is compared with the layer-wise single heat input strategy. The variation of thermal and residual stress distributions has been studied based on the different cases proposed related to layer-wise multi-level heat loading. A good agreement between predicted and experimentally observed temperature and residual stress values has been observed. The developed framework predicted thermal distribution with an average error of 9.71%, 9.13%, 7.57%, and 4.52% for case #1, case #2, case #3, and case #4, respectively. In addition to that, longitudinal stresses in the modeled component recorded a reduction of 17.94% for four-level heat input (case #4) compared to the respective value observed in case #1. Therefore, a multi-level heat input strategy is recommended over a single-level heat input approach for the components with small deposition lengths manufactured through the WAAM process.

References

1.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R. A.
,
2006
, “
Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
220
(
6
), pp.
875
885
.
2.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire + Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
3.
Artaza
,
T.
,
Bhujangrao
,
T.
,
Suárez
,
A.
,
Veiga
,
F.
, and
Lamikiz
,
A.
,
2020
, “
Influence of Heat Input on the Formation of Laves Phases and Hot Cracking in Plasma Arc Welding (PAW) Additive Manufacturing of Inconel 718
,”
Metals
,
10
(
6
), p.
Article No. 776
.
4.
Seow
,
C. E.
,
Zhang
,
J.
,
Coules
,
H. E.
,
Wu
,
G.
,
Jomes
,
C.
,
Ding
,
J.
, and
Williams
,
S.
,
2020
, “
Effect of Crack-Like Defects on the Fracture Behaviour of Wire + Arc Additively Manufactured Nickel-Base Alloy 718
,”
Addit. Manuf.
,
36
, p.
Article No. 101578
.
5.
Jiang
,
F.
,
Sun
,
L.
,
Huang
,
R.
,
Jiang
,
H.
,
Bai
,
G.
,
Qi
,
X.
,
Kiu
,
C.
,
Su
,
Y.
,
Guo
,
C.
, and
Wang
,
J.
,
2020
, “
Effects of Heat Input on Morphology of Thin-Wall Components Fabricated by Wire and Arc Additive Manufacturing
,”
Adv. Eng. Mater.
,
23
(
4
), p.
Article No. 2001443
.
6.
Barsoum
,
Z.
, and
Barsoum
,
I.
,
2009
, “
Residual Stress Effects on Fatigue Life of Welded Structures Using LEFM
,”
Eng. Fail. Anal.
,
16
(
1
), pp.
449
467
.
7.
Toribio
,
J.
,
1998
, “
Residual Stress Effect in Stress Corrosion Cracking
,”
J. Mater. Eng. Perform.
,
7
(
2
), pp.
173
182
.
8.
Zhang
,
Y.
,
Chen
,
Y.
,
Li
,
P.
, and
Male
,
A. T.
,
2003
, “
Weld Deposition-Based Rapid Prototyping: A Preliminary Study
,”
J. Mater. Process. Technol.
,
135
(
2–3
), pp.
347
357
.
9.
Madenci
,
E.
, and
Guven
,
I.
,
2006
,
The Finite Element Method and Applications in Engineering Using ANSYS
, 2nd ed.,
Springer
,
New York
.
10.
Chiumenti
,
M.
,
Cervera
,
M.
,
Salmi
,
A.
,
de Saracibar
,
C. A.
,
Dialami
,
N.
, and
Matsui
,
K.
,
2010
, “
Finite Element Modeling of Multi-pass Welding and Shaped Metal Deposition Processes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37–40
), pp.
2343
2359
.
11.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
59
64
.
12.
Jandric
,
Z.
, and
Kovacevic
,
R.
,
2004
, “
Heat Management in Solid Free-Form Fabrication Based on Deposition by Welding
,”
Proc. Inst. Mech. Eng. B
,
218
(
11
), pp.
1525
1540
.
13.
Srivastava
,
S.
,
Garg
,
R. K.
,
Sharma
,
V. S.
, and
Sachdeva
,
A.
,
2020
, “
Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-scale Continuum Modelling Approach
,”
Arch. Comput. Meth. Eng.
,
28
(
4
), pp.
3491
3515
.
14.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
2001a
, “
Successive Deposition of Metals in Solid Freeform Fabrication Process, Part 1: Thermo-mechanical Models of Layers and Droplet Column
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
623
631
.
15.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
2001b
, “
Successive Deposition of Metals in Solid Freeform Fabrication Process, Part 2: Thermo-mechanical Models of Adjacent Droplets
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
632
638
.
16.
Mughal
,
M. P.
,
Fawad
,
H.
,
Mufti
,
R. A.
, and
Siddique
,
M.
,
2005
, “
Deformation Modelling in Layered Manufacturing of Metallic Parts Using Gas Metal Arc Welding: Effect of Process Parameters
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
7
), pp.
1187
1204
.
17.
Srivastava
,
S.
,
Garg
,
R. K.
,
Sachdeva
,
A.
, and
Sharma
,
V. S.
,
2022
, “
A Multi-tier Layer-Wise Thermal Management Study for Long-Scale Wire-Arc Additive Manufacturing
,”
J. Mater. Process. Technol.
,
306
, p.
Article No. 117651
.
18.
Srivastava
,
S.
,
Garg
,
R. K.
,
Sachdeva
,
A.
,
Sharma
,
V. S.
, and
Singh
,
S.
,
2022
, “
An Experimental–Numerical Investigation for Layer-Wise-Heat-Input Management in GMA-Based Additive Manufacturing
,”
J. Inst. Eng. (India): C.
19.
Gudur
,
S.
,
Nagallapati
,
V.
,
Pawar
,
S.
,
Muvvala
,
G.
, and
Simhambhatla
,
S.
,
2021
, “
A Study on the Effect of Substrate Heating and Cooling on Bead Geometry in Wire Arc Additive Manufacturing and Its Correlation With Cooling Rate
,”
Mater. Today: Proc.
,
41
, pp.
431
436
.
20.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R. A.
,
2006
, “
Finite Element Prediction of Thermal Stresses and Deformations in Layered Manufacturing of Metallic Parts
,”
ACTA Mech.
,
183
(
1–2
), pp.
61
79
.
21.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2011
, “
A 3D Dynamic Analysis of Thermal Behavior During Single-Pass Multi-layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
488
495
.
22.
Cunningham
,
C. R.
,
Dhokia
,
V.
,
Shokrani
,
A.
, and
Newman
,
S. T.
,
2021
, “
Effects of In-Process LN2 Cooling on the Microstructure and Mechanical Properties of Type 316L Stainless Steel Produced by Wire Arc Directed Energy Deposition
,”
Mater. Lett.
,
282
, p.
Article No. 128707
.
23.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
, and
Fei
,
Z.
,
2018
, “
The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
258
, pp.
97
105
.
24.
Li
,
F.
,
Chen
,
S.
,
Shi
,
J.
,
Zhao
,
Y.
, and
Tian
,
H.
,
2018
, “
Thermoelectric Cooling Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures
,”
Appl. Sci.
,
8
(
2
), p.
Article No. 207
.
25.
Zhao
,
X. M.
,
Zhang
,
H. O.
,
Wang
,
G. L.
,
Liang
,
L. Y.
,
Fu
,
Y. H.
,
Bai
,
X. W.
, and
Wang
,
X. P.
,
2015
, “
Numerical Simulation and Experimental Investigation of Arc Based Additive Manufacturing Assisted With External Longitudinal Static Magnetic Field
,”
Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium
,
University of Texas
,
Austin, TX
,
Aug. 10–12
.
26.
Xiong
,
J.
,
Lei
,
Y.
, and
Li
,
R.
,
2017
, “
Finite Element Analysis and Experimental Validation of Thermal Behavior for Thin-Walled Parts in GMAW-Based Additive Manufacturing With Various Substrate Preheating Temperatures
,”
Appl. Therm. Eng.
,
126
, pp.
43
52
.
27.
Wu
,
Q.
,
Mukherjee
,
T.
,
De
,
A.
, and
DebRoy
,
T.
,
2020
, “
Residual Stresses in Wire-Arc Additive Manufacturing—Hierarchy of Influential Variables
,”
Addit. Manuf.
,
35
, p.
Article No. 101355
.
28.
Derekar
,
K. S.
,
Ahmad
,
B.
,
Zhang
,
X.
,
Joshi
,
S. S.
,
Lawrence
,
J.
,
Xu
,
L.
,
Melton
,
G.
, and
Addison
,
A.
,
2022
, “
Effects of Process Variants on Residual Stresses in Wire Arc Additive Manufacturing of Aluminum Alloy 5183
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
071005
.
29.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Ganguly
,
S.
,
Almeida
,
P. M. S.
,
Wang
,
F.
, and
Williams
,
S.
,
2011
, “
Thermo-mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-layer Parts
,”
Comput. Mater. Sci.
,
50
(
12
), pp.
3315
3322
.
30.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Williams
,
S.
,
Wang
,
F.
, and
Almeida
,
P. M. S.
,
2014
, “
A Computationally Efficient Finite Element Model of Wire and Arc Additive Manufacture
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
227
236
.
31.
Wei
,
H. L.
,
Mukherjee
,
T.
,
Zhang
,
W.
,
Zuback
,
J. S.
,
Knapp
,
G. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2021
, “
Mechanistic Models for Additive Manufacturing of Metallic Components
,”
Prog. Mater. Sci.
,
116
, p.
Article No. 100703
.
32.
Gornyakov
,
V.
,
Sun
,
Y.
,
Ding
,
J.
, and
Williams
,
S.
,
2022
, “
Efficient Determination and Evaluation of Steady-State Thermal–Mechanical Variables Generated by Wire Arc Additive Manufacturing and High Pressure Rolling
,”
Modell. Simul. Mater. Sci. Eng.
,
30
(
1
), p.
Article No. 014001
.
33.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
34.
Kӧhler
,
M.
,
Sun
,
L.
,
Hensel
,
J.
,
Pallaspuro
,
S.
,
Kӧmi
,
J.
,
Dilger
,
K.
, and
Zhang
,
Z.
,
2021
, “
Comparative Study of Deposition Patterns for DED-Arc Additive Manufacturing of Al-4046
,”
Mater. Des.
,
210
, p.
Article No. 110122
.
35.
Chi
,
J.
,
Cai
,
Z.
,
Wan
,
Z.
,
Zhang
,
H.
,
Chen
,
Z.
,
Li
,
L.
,
Li
,
Y.
,
Peng
,
P.
, and
Guo
,
W.
,
2020
, “
Effects of Heat Treatment Combined With Laser Shock Peening on Wire and Arc Additive Manufactured Ti17 Titanium Alloy: Microstructures, Residual Stress and Mechanical Properties
,”
Surf. Coat. Technol.
,
396
, p.
Article No. 125908
.
36.
Aktürk
,
M.
,
Boy
,
M.
,
Gupta
,
M. K.
,
Waqar
,
S.
,
Krolczyk
,
G. M.
, and
Korkmaz
,
M. E.
,
2021
, “
Numerical and Experimental Investigations of Built Orientation Dependent Johnsen-Cook Model for Selective Laser Melting Manufactured AlSi10Mg
,”
Journal of Materials Research and Technology
,
15
, pp.
6244
6259
.
37.
Korkmaz
,
M. E.
,
Gupta
,
M. K.
,
Waqar
,
S.
,
Kuntoğlu
,
M.
,
Krolczyk
,
G. M.
,
Maruda
,
R. W.
, and
Pimenov
,
D. Y.
,
2022
, “
A Short Review on Thermal Treatments of Titanium & Nickel Based Alloys Processes by Selective Laser Melting
,”
J. Mater. Res. Technol.
,
16
, pp.
1090
1101
.
38.
Ke
,
W. C.
,
Oliveira
,
J. P.
,
Cong
,
B. Q.
,
Ao
,
S. S.
,
Qi
,
Z. W.
,
Peng
,
B.
, and
Zeng
,
Z.
,
2022
, “
“Multi-layer Deposition Mechanism in Ultra High-Frequency Pulsed Wire Arc Additive Manufacturing (WAAM) of NiTi Shape Memory Alloys
,”
Addit. Manuf.
,
50
, p.
Article No. 102513
.
39.
Giarollo
,
D. F.
,
Mazzaferro
,
C. C. P.
, and
Mazzaferro
,
J. A. E.
,
2021
, “
Comparison Between Two Heat Source Models for Wire-Arc Additive Manufacturing Using GMAW Process
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
1
), p.
Article No. 7
.
40.
Asadi
,
P.
,
Alimohammadi
,
S.
,
Kohantorabi
,
O.
,
Soleymani
,
A.
, and
Fazli
,
A.
,
2020
, “
Numerical Investigation on the Effect of Welding Speed and Heat Input on the Residual Stress of Multi-Pass TIG Welded Stainless Steel Pipe
,”
Proc. Inst. Mech. Eng. B
,
235
(
6–7
), pp.
1007
1021
.
41.
Akbari
,
D.
, and
Sattari-Far
,
I.
,
2009
, “
Effect of the Welding Heat Input on Residual Stresses in Butt-Welds of Dissimilar Pipe Joints
,”
Int. J. Press. Vessels Pip.
,
86
(
11
), pp.
769
776
.
42.
Korkamaz
,
M. E.
,
Waqar
,
S.
,
Garcia-Collado
,
A.
,
Gupta
,
M. K.
, and
Krolczyk
,
G. M.
,
2022
, “
A Technical Overview of Metallic Parts in Hybrid Additive Manufacturing Industry
,”
J. Mater. Res. Technol.
,
18
, pp.
384
395
.
43.
Chakrabarty
,
J.
,
2010
,
Applied Plasticity
,
Springer
,
New York
.
44.
Abid
,
M.
, and
Siddique
,
M.
,
2005
, “
Numerical Simulation to Study the Effect of Tack Welds and Root Gap on Welding Deformations and Residual Stresses of a Pipe-Flange Joint
,”
Int. J. Press. Vessels Pip.
,
82
(
11
), pp.
860
871
.
45.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Source
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
46.
Deng
,
D.
,
Murakawa
,
H.
, and
Liang
,
W.
,
2008
, “
Numerical and Experimental Investigations on Welding Residual Stress in Multi-pass Butt-Welded Austenitic Stainless Steel Pipe
,”
Comput. Mater. Sci.
,
42
(
2
), pp.
234
244
.
47.
Chergui
,
A.
,
Beraud
,
N.
,
Vignat
,
F.
,
Villeneuve
,
F.
,
2021
, “Finite Element Modeling and Validation of Metal Deposition in Wire Arc Additive Manufacturing,”
Advances on Mechanics, Design Engineering and Manufacturing III
,
L.
Roucoules
,
M.
Paredes
,
B.
Eynard
,
P.
Morer Camo
,
C.
Rizzi
, eds.,
Springer
,
Cham, France
.
You do not currently have access to this content.