Abstract

Friction stir welding (FSW) is widely recognized green manufacturing process capable of producing good quality welded joints at a temperature lower than the melting point. However, most of the works are focused on the establishment of the process parameters for a defect-free joint. There is a lack to understand the formation of defects from a physical basis and visualization of the same, which is otherwise difficult to predict by means of simple experiments. The conventional models do not predict chip formation and surface morphology by accounting for the material loss during the process. Hence, a three-dimensional (3D) finite element-based thermomechanical model is developed following coupled Eulerian-Lagrangian (CEL) approach to understand surface morphology by triggering material flow associated with tool–material interaction. In the present quasi-static analysis, the mass scaling factor is explored to make the model computationally feasible by varying the FSW parameter of plunge depth. The simulated results are validated with experimentally measured temperature and surface morphology. In the CEL approach, the material flow out of the workpiece enables the visualization of the chip formation, whereas small deformation predicts the surface quality of the joint.

References

1.
Yaduwanshi
,
D. K.
,
Bag
,
S.
, and
Pal
,
S.
,
2014
, “
Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
23
(
10
), pp.
3794
3803
.
2.
Yaduwanshi
,
D. K.
,
Bag
,
S.
, and
Pal
,
S.
,
2018
, “
On the Effect of Tool Offset in Hybrid-FSW of Copper-Aluminium Alloy
,”
Mater. Manuf. Process.
,
33
(
3
), pp.
277
287
.
3.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2013
, “
Coupled Eulerian Lagrangian Finite Element Modeling of Friction Stir Welding Processes
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1433
1439
.
4.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2016
, “
Application of the Coupled Eulerian-Lagrangian (CEL) Method to the Modeling of Orthogonal Cutting
,”
Eur. J. Mech. A/Solids
,
59
, pp.
58
66
.
5.
Smojver
,
I.
, and
Ivančević
,
D.
,
2011
, “
Bird Strike Damage Analysis in Aircraft Structures Using Abaqus/Explicit and Coupled Eulerian Lagrangian Approach
,”
Compos. Sci. Technol.
,
71
(
4
), pp.
489
498
.
6.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2015
, “
On the Introduction of Adaptive Mass Scaling in a Finite Element Model of Ti6Al4 V Orthogonal Cutting
,”
Simul. Model. Pract. Theory
,
53
, pp.
1
14
.
7.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.
8.
Xu
,
S.
,
Deng
,
X.
,
Reynolds
,
A. P.
, and
Seidel
,
T. U.
,
2001
, “
Finite Element Simulation of Material Flow in Friction Stir Welding
,”
Sci. Technol. Weld. Join.
,
6
(
3
), pp.
191
193
.
9.
Dialami
,
N.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Segatori
,
A.
, and
Osikowicz
,
W.
,
2017
, “
Enhanced Friction Model for Friction Stir Welding (FSW) Analysis: Simulation and Experimental Validation
,”
Int. J. Mech. Sci.
,
133
, pp.
555
567
.
10.
Zhang
,
Z.
,
2008
, “
Comparison of two Contact Models in the Simulation of Friction Stir Welding Process
,”
J. Mater. Sci.
,
43
(
17
), pp.
5867
5877
.
11.
Yaduwanshi
,
D. K.
,
Bag
,
S.
, and
Pal
,
S.
,
2016
, “
Numerical Modeling and Experimental Investigation on Plasma-Assisted Hybrid Friction Stir Welding of Dissimilar Materials
,”
Mater. Des.
,
92
, pp.
166
183
.
12.
Nandan
,
R.
,
Roy
,
G. G.
,
Lienert
,
T. J.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.
13.
Das
,
D.
,
Bag
,
S.
, and
Pal
,
S.
,
2021
, “
A Finite Element Model for Surface and Volumetric Defects in the FSW Process Using a Coupled Eulerian–Lagrangian Approach
,”
Sci. Technol. Weld. Join.
,
26
(
5
), pp.
412
419
.
14.
Koric
,
S.
,
Hibbeler
,
L. C.
, and
Thomas
,
B. G.
,
2009
, “
Explicit Coupled Thermo-mechanical finite Element Model of Steel Solidification
,”
Int. J. Numer. Meth. Eng.
,
78
(
1
), pp.
1
31
.
15.
Harewood
,
F. J.
, and
McHugh
,
P. E.
,
2007
, “
Comparison of the Implicit and Explicit Finite Element Methods Using Crystal Plasticity
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
481
494
.
16.
Olovsson
,
L.
,
Simonsson
,
K.
, and
Unosson
,
M.
,
2005
, “
Selective Mass Scaling for Explicit Finite Element Analyses
,”
Int. J. Numer. Methods Eng.
,
63
(
10
), pp.
1436
1445
.
17.
Prior
,
A. M.
,
1994
, “
Applications of Implicit and Explicit Finite Element Techniques to Metal Forming
,”
J. Mater. Process. Tech.
,
45
(
1–4
), pp.
649
656
.
18.
Cocchetti
,
G.
,
Pagani
,
M.
, and
Perego
,
U.
,
2013
, “
Selective Mass Scaling and Critical Time-Step Estimate for Explicit Dynamics Analyses With Solid-Shell Elements
,”
Comput. Struct.
,
127
, pp.
39
52
.
19.
Hammelmüller
,
F.
, and
Zehetner
,
C.
,
2015
, “
Increasing Numerical Efficiency in Coupled Eulerian-Lagrangian Metal Forming Simulations
,”
COMPLAS XIII: Proceedings of the XIII International Conference on Computational Plasticity: Fundamentals and Applications
,
Barcelona, Spain
,
Sept. 1–3
, pp.
727
733
.
20.
Wang
,
L.
, and
Long
,
H.
,
2011
, “
Investigation of Material Deformation in Multi-pass Conventional Metal Spinning
,”
Mater. Des.
,
32
(
5
), pp.
2891
2899
.
21.
Kumar
,
B.
,
Bag
,
S.
,
Paul
,
C. P.
,
Das
,
C. R.
,
Ravikumar
,
R.
, and
Bindra
,
K. S.
,
2020
, “
Influence of the Mode of Laser Welding Parameters on Microstructural Morphology in Thin Sheet Ti6Al4 V Alloy
,”
Opt. Laser Technol.
,
131
, p.
106456
.
22.
Sahu
,
A. K.
, and
Bag
,
S.
,
2020
, “
Probe Pulse Conditions and Solidification Parameters for the Dissimilar Welding of Inconel 718 and AISI 316L Stainless Steel
,”
Metall. Mater. Trans. A
,
51
(
5
), pp.
1
17
.
23.
Ansari
,
M. A.
,
Samanta
,
A.
,
Behnagh
,
R. A.
, and
Ding
,
H.
,
2019
, “
An Efficient Coupled Eulerian-Lagrangian Finite Element Model for Friction Stir Processing
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1495
1508
.
24.
Gadakh
,
V. S.
,
Kumar
,
A.
, and
Vikhe Patil
,
G. J.
,
2015
, “
Analytical Modeling of the Friction Stir Welding Process Using Different Pin Profiles
,”
Weld. J.
,
94
(
4
), pp.
115
124
.
25.
Sun
,
Z.
, and
Wu
,
C. S.
,
2018
, “
A Numerical Model of Pin Thread Effect on Material Flow and Heat Generation in Shear Layer During Friction Stir Welding
,”
J. Manuf. Process.
,
36
, pp.
10
21
.
26.
Yaduwanshi
,
D. K.
,
Bag
,
S.
, and
Pal
,
S.
,
2015
, “
Heat Transfer Analyses in Friction Stir Welding of Aluminium Alloy
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
229
(
10
), pp.
1722
1733
.
27.
Zheng
,
Q.
,
Feng
,
X.
,
Shen
,
Y.
,
Huang
,
G.
, and
Zhao
,
P.
,
2017
, “
Effect of Plunge Depth on Microstructure and Mechanical Properties of FSW Lap Joint Between Aluminum Alloy and Nickel-Base Alloy
,”
J. Alloy. Compd.
,
695
, pp.
952
961
.
28.
Zhang
,
Z.
, and
Zhang
,
H. W.
,
2009
, “
Numerical Studies on Controlling of Process Parameters in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
241
270
.
29.
Das
,
D.
,
Bag
,
S.
,
Pal
,
S.
, and
Amin
,
M. R.
,
2020
, “
Prediction of Surface Profile in Friction Stir Welding Using Coupled Eulerian and Lagrangian Method
,”
IMECE
, Vol.
84591
, p.
V011T11A035
.
30.
Simulia
,
D. S.
,
2013
, “
ABAQUS 6.13 User’s Manual
,”
Dassault Systems
,
Providence, RI
, 305, 306.
31.
Aziz
,
S. B.
,
Dewan
,
M. W.
,
Huggett
,
D. J.
,
Wahab
,
M. A.
,
Okeil
,
A. M.
, and
Liao
,
T. W.
,
2018
, “
A Fully Coupled Thermomechanical Model of Friction Stir Welding (FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints
,”
Acta Metall. Sin. (Eng. Lett.)
,
31
(
1
), pp.
1
18
.
You do not currently have access to this content.