Abstract

In today’s world, the hemispherical-shaped component’s fine finishing with high wear resistance and dimensional accuracy is required in different applications such as shells, molds, and implants. The magnetorheological finishing (MRF) method using a novel hemispherical tip-based tool is used to finish the hemispherical cups. The study aims to develop a novel theoretical mathematical model to predict the surface roughness reduction of the hemispherical cups using the present MRF process. Because the magnetic field regulates forces in the MRF process, the effect of the magnetic flux density (MFD) in the fine finishing of the hemispherical acetabular cup workpiece has been examined theoretically and experimentally. The mathematical model for reducing surface roughness is next tested experimentally on a hemispherical acetabular cup workpiece surface. The results of the predicted roughness match well with the experimental values with the error ranging from 1.17% to 6.15%. Further, surface morphology, microhardness, and dimensional accuracy tests are done on the workpiece using scanning electron microscopy, a microhardness tester, and coordinate measuring equipment to evaluate the efficacy of the present process. The present mathematical model for the MRF process predicts fine finishing along with the overall enhancement in the surface quality of the hemispherical acetabular cup surface.

References

1.
Pace
,
T. B.
,
Keith
,
K. C.
,
Alvarez
,
E.
,
Snider
,
R. G.
,
Tanner
,
S. L.
, and
DesJardins
,
J. D.
,
2013
, “
Comparison of Conventional Polyethylene Wear and Signs of Cup Failure in Two Similar Total Hip Designs
,”
Adv. Orthop.
,
2013
, pp.
1
7
.
2.
Chan
,
M. L.
,
Fonda
,
P.
,
Reyes
,
C.
,
Xie
,
J.
,
Najar
,
H.
,
Lin
,
L.
,
Yamazaki
,
K.
, and
Horsley
,
D. A.
,
2012
, “
Micromachining 3D Hemispherical Features in Silicon via Micro-EDM
,”
2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Paris, France
,
Jan. 29
, pp.
289
292
.
3.
Choudhury
,
D.
,
Ranusa
,
M.
,
Fleming
,
R. A.
,
Vrbka
,
M.
,
Krupka
,
I.
,
Teeter
,
M. G.
,
Goss
,
J.
, and
Zou
,
M.
,
2018
, “
Mechanical Wear and Oxidative Degradation Analysis of Retrieved Ultra-High Molecular Weight Polyethylene Acetabular Cups
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
314
323
.
4.
Kumakura
,
T.
,
Puppulin
,
L.
,
Yamamoto
,
K.
,
Takahashi
,
Y.
, and
Pezzotti
,
G.
,
2009
, “
In-Depth Oxidation and Strain Profiles in UHMWPE Acetabular Cups Non-Destructively Studied by Confocal Raman Microprobe Spectroscopy
,”
J. Biomater. Sci. Polym. Ed.
,
20
(
12
), pp.
1809
1822
.
5.
Souza
,
M. M. D.
,
Trommer
,
R. M.
,
Maru
,
M. M.
,
Roesler
,
C. R. D. M.
,
Barros
,
W. S.
, and
Dutra
,
M. S.
,
2016
, “
Surface Evaluation of Orthopaedic Hip Implants Marketed in Brazil
,”
J. Phys.: Conf. Ser.
,
733
(
1
), p.
012034
.
6.
Kurtz
,
S. M.
,
2009
,
UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices
, 2nd ed.,
Academic Press
,
Burlington, MA, London
.
7.
Meding
,
J. B.
,
Keaton
,
M.
,
Davis
,
K. E.
, and
Keating
,
M. E.
,
2011
, “
Acetabular UHMWPE Survival and Wear Changes With Different Manufacturing Techniques
,”
Clin. Orthop. Relat. Res.
,
469
(
2
), pp.
405
411
.
8.
Nakahara
,
I.
,
Nakamura
,
N.
,
Nishii
,
T.
,
Miki
,
H.
,
Sakai
,
T.
, and
Sugano
,
N.
,
2010
, “
Minimum Five-Year Follow-Up Wear Measurement of Longevity Highly Cross-Linked Polyethylene Cup Against Cobalt Chromium or Zirconia Heads
,”
J. Arthrosc.
,
25
(
8
), pp.
1182
1187
.
9.
Garcia-Rey
,
E.
, and
Garcia-Cimbrelo
,
E.
,
2010
, “
Polyethylene in Total hip Arthroplasty: Half a Century in the Limelight
,”
J. Orthop. Traumatol.
,
11
(
2
), pp.
67
72
.
10.
Wang
,
G.
,
Zhou
,
X.
,
Meng
,
G.
, and
Yang
,
X.
,
2018
, “
Modeling Surface Roughness for Polishing Process Based on Abrasive Cutting and Probability Theory
,”
Mach. Sci. Technol.
,
22
(
1
), pp.
86
98
.
11.
Ghosh
,
S.
, and
Abanteriba
,
S.
,
2016
, “
Status of Surface Modification Techniques for Artificial Hip Implants
,”
Sci. Technol. Adv. Mater.
,
17
(
1
), pp.
715
735
.
12.
Arslan
,
A.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Varman
,
M.
,
Mufti
,
R. A.
,
Mosarof
,
M. H.
,
Khuong
,
L. S.
, and
Quazi
,
M. M.
,
2016
, “
Surface Texture Manufacturing Techniques and Tribological Effect of Surface Texturing on Cutting Tool Performance: A Review. Critical Reviews in Solid State and Materials
,”
Crit. Rev. Solid State Mater. Sci.
,
41
(
6
), pp.
447
481
.
13.
Zhang
,
L. C.
,
Kiat
,
E. C. S.
, and
Pramanik
,
A.
,
2009
, “
A Briefing on the Manufacture of Hip Joint Prostheses
,”
Adv. Mater. Res.
,
76
, pp.
212
216
.
14.
Changsheng
,
G.
,
Shi
,
Z.
,
Mullany
,
B.
,
Linke
,
B.
,
Yamaguchi
,
H.
,
Chaudhari
,
R.
,
Hucker
,
S.
, and
Shih
,
A.
,
2020
, “
Recent Advancements in Machining With Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110810
.
15.
Alavijeh
,
M. S.
, and
Amirabadi
,
H.
,
2019
, “
Investigation and Optimization of the Internal Cylindrical Surface Lapping Process of 440c Steel
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
3933
3941
.
16.
Singh
,
M.
,
Singh
,
A.
, and
Singh
,
A. K.
,
2018
, “
A Rotating Core-Based Magnetorheological Nano-Finishing Process for External Cylindrical Surfaces
,”
Mater. Manufac. Process.
,
33
(
11
), pp.
1160
1168
.
17.
Paswan
,
S. K.
, and
Singh
,
A. K.
,
2020
, “
Theoretical and Experimental Investigations on Nano-Finishing of Internal Cylindrical Surface With a Newly Developed Rotational Magnetorheological Honing Process
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
2
), pp.
363
383
.
18.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
State-of-the-Art Cooling and Lubrication for Machining Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
050801
.
19.
Kim
,
W. B.
,
Lee
,
S. H.
, and
Min
,
B. K.
,
2004
, “
Surface Finishing and Evaluation of Three-Dimensional Silicon Microchannel Using Magnetorheological Fluid
,”
ASME J. Manufac. Sci. Eng.
,
126
(
4
), pp.
772
778
.
20.
Lanzetta
,
M.
, and
Iagnemma
,
K.
,
2013
, “
Gripping by Controllable Wet Adhesion Using a Magnetorheological Fluid
,”
CIRP Ann.
,
62
(
1
), pp.
21
25
.
21.
Kordonski
,
W. I.
, and
Jacobs
,
S. D.
,
1996
, “
Magnetorheological Finishing
,”
Int. J. Mod. Phys. B
,
10
(
23–24
), pp.
2837
2848
.
22.
Singh
,
M.
, and
Singh
,
A. K.
,
2019
, “
Improved Magnetorheological Finishing Process With Rectangular Core Tip for External Cylindrical Surfaces
,”
Mater. Manuf. Process.
,
34
(
9
), pp.
1
13
.
23.
Maan
,
S.
,
Singh
,
G.
, and
Singh
,
A. K.
,
2017
, “
Nano-Surface-Finishing of Permanent Mold Punch Using Magnetorheological Fluid-Based Finishing Processes
,”
Mater. Manuf. Process.
,
32
(
9
), pp.
1004
1010
.
24.
Sadiq
,
A.
, and
Shunmugam
,
M. S.
,
2009
, “
Investigation Into Magnetorheological Abrasive Honing (MRAH)
,”
Int. J. Mach. Tool. Manuf.
,
49
(
7–8
), pp.
554
560
.
25.
Sidpara
,
A.
, and
Jain
,
V. K.
,
2012
, “
Theoretical Analysis of Forces in Magnetorheological Fluid-Based Finishing Process
,”
Int. J. Mech. Sci.
,
56
(
1
), pp.
50
59
.
26.
Alam
,
Z.
, and
Jha
,
S.
,
2017
, “
Modeling of Surface Roughness in Ball End Magnetorheological Finishing (BEMRF) Process
,”
Wear
,
374
, pp.
54
62
.
27.
Singh
,
M.
, and
Singh
,
A. K.
,
2020
, “
Theoretical Investigations Into Magnetorheological Finishing of External Cylindrical Surfaces for Improved Performance
,”
Proc. Inst. Mech. Eng., Part C.
,
234
(
24
), pp.
4872
4892
.
28.
Paswan
,
S. K.
, and
Singh
,
A. K.
,
2019
, “
Analysis of Surface Finishing Mechanism in a Newly Developed Rotational Magnetorheological Honing Process for Its Productivity Improvement
,”
Wear
,
426
, pp.
68
82
.
29.
Yamaguchi
,
H.
,
Shinmura
,
T.
, and
Ikeda
,
R.
,
2007
, “
Study of Internal Finishing of Austenitic Stainless Steel Capillary Tubes by Magnetic Abrasive Finishing
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
885
892
.
30.
Arora
,
K.
, and
Singh
,
A. K.
,
2020
, “
Magnetorheological Finishing of UHMWPE Acetabular Cup Surface and Its Performance Analysis
,”
Mater. Manuf. Process.
,
35
(
14
), pp.
1631
1649
.
31.
Guo
,
J.
,
Song
,
C.
,
Fu
,
Y.
,
Au
,
K. H.
,
Kum
,
C. W.
,
Goh
,
M. H.
,
Ren
,
T.
,
Huang
,
R.
, and
Sun
,
C. N.
,
2020
, “
Internal Surface Quality Enhancement of Selective Laser Melted Inconel 718 by Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101003
.
32.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tool. Manuf.
,
39
(
12
), pp.
1903
1923
.
33.
Steinberg
,
M. E.
, and
Marvin
,
E.
,
2014
, “
Total Hip Replacement Arthroplasty-Past, Present and Future
,”
Univ. Pa. Orthop. J.
,
19
, pp.
1
11
.
34.
Kato
,
K.
,
2000
, “
Wear in Relation to Friction—A Review
,”
Wear
,
241
(
2
), pp.
151
157
.
35.
Singh
,
M.
, and
Singh
,
A. K.
,
2020
, “
Magnetorheological Finishing of Grooved Drum Surface and Its Performance Analysis in Winding Process
,”
Int. J. Adv. Manuf. Technol.
,
106
(
7–8
), pp.
2921
2937
.
You do not currently have access to this content.