Abstract

With the increasing application of the advanced high strength steel material in the automobile industry, the thickness reduction of the bending area has attracted more and more attention since the product strength is highly influenced by the quality of the bending region. In this paper, three major factors, the thickness reduction, the variation of the local bending radius within the bending zone, and the tooling mark on the product’s surface, are investigated through three different loading patterns for a free U-bending profile numerically and experimentally. The results demonstrate a thinning pattern consists of three peaks over the bending region for large bending ratio (R/t = 2.14) and only one peak for small bending ratio (R/t = 0.5). Corresponding valleys for the local radius are found to match the thinning pattern. Further, the use of finite element simulation can successfully predict the location and the severity of the wear on the product. From the experiment results, even if the metal blank only experienced one stroke, the tooling mark contains both adhesive and abrasive wear. A better understanding of the characteristics of the bending zone is achieved, and the findings can help in improving the design process for forming strategies.

References

1.
Sandborn
,
P.
, and
Lucyshyn
,
W.
,
2019
, “
Defining Sustainment for Engineered Systems—A Technology and Systems View
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
024701
. 10.1115/1.4041424
2.
Lesch
,
C.
,
Kwiaton
,
N.
, and
Klose
,
F. B.
,
2017
, “
Advanced High Strength Steels (AHSS) for Automotive Applications—Tailored Properties by Smart Microstructural Adjustments
,”
Steel Res. Int.
,
88
(
10
), p.
1700210
. 10.1002/srin.201700210
3.
Pereira
,
M. P.
,
Duncan
,
J. L.
,
Yan
,
W.
, and
Rolfe
,
B. F.
,
2009
, “
Contact Pressure Evolution at the Die Radius in Sheet Metal Stamping
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3532
3541
. 10.1016/j.jmatprotec.2008.08.010
4.
Pereira
,
M. P.
,
Yan
,
W.
, and
Rolfe
,
B. F.
,
2008
, “
Contact Pressure Evolution and Its Relation to Wear in Sheet Metal Forming
,”
Wear
,
265
(
11–12
), pp.
1687
1699
. 10.1016/j.wear.2008.04.042
5.
Liu
,
X.-l.
,
Cao
,
J.-g.
,
Chai
,
X.-t.
,
He
,
Z.-l.
,
Liu
,
J.
, and
Zhao
,
R.-g.
,
2018
, “
Experimental and Numerical Prediction of the Local Thickness Reduction Defect of Complex Cross-Sectional Steel in Cold Roll Forming
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
1837
1848
. 10.1007/s00170-017-1279-9
6.
Traub
,
T.
,
Chen
,
X.
, and
Groche
,
P.
,
2017
, “
Experimental and Numerical Investigation of the Bending Zone in Roll Forming
,”
Int. J. Mech. Sci.
,
131
, pp.
956
970
. 10.1016/j.ijmecsci.2017.07.056
7.
Mallick
,
P. K.
,
2010
,
Materials, Design and Manufacturing for Lightweight Vehicles
,
Elsevier
,
New York
.
8.
Leu
,
D.-K.
,
2016
, “
A Simplified Approach for Distinguishing Between Spring-Back and Spring-Go in Free U-Die Bending Process of SPFC 440 Sheets
,”
Mater. Des.
,
94
, pp.
314
321
. 10.1016/j.matdes.2016.01.020
9.
Hu
,
J.
,
Marciniak
,
Z.
, and
Duncan
,
J.
,
2002
,
Mechanics of Sheet Metal Forming
,
Elsevier
,
New York
.
10.
Cora
,
Ö. N.
,
Ağcayazı
,
A.
,
Namiki
,
K.
,
Sofuoğlu
,
H.
, and
Koç
,
M.
,
2012
, “
Die Wear in Stamping of Advanced High Strength Steels—Investigations on the Effects of Substrate Material and Hard-Coatings
,”
Tribol. Int.
,
52
, pp.
50
60
. 10.1016/j.triboint.2012.02.016
11.
Meng
,
H.
, and
Ludema
,
K.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181
, pp.
443
457
. 10.1016/0043-1648(95)90158-2
12.
Pereira
,
M. P.
,
Yan
,
W.
, and
Rolfe
,
B. F.
,
2010
, “
Sliding Distance, Contact Pressure and Wear in Sheet Metal Stamping
,”
Wear
,
268
(
11–12
), pp.
1275
1284
. 10.1016/j.wear.2010.01.020
13.
Pereira
,
M. P.
,
Yan
,
W.
, and
Rolfe
,
B. F.
,
2012
, “
Wear at the Die Radius in Sheet Metal Stamping
,”
Wear
,
274–275
, pp.
355
367
. 10.1016/j.wear.2011.10.006
14.
Vollertsen
,
F.
, and
Hu
,
Z.
,
2008
, “
Determination of Size-Dependent Friction Functions in Sheet Metal Forming With Respect to the Distribution of the Contact Pressure
,”
Prod. Eng.
,
2
(
4
), p.
345
. 10.1007/s11740-008-0130-4
15.
Groche
,
P.
,
Nitzsche
,
G.
, and
Elsen
,
A.
,
2008
, “
Adhesive Wear in Deep Drawing of Aluminum Sheets
,”
CIRP Ann.
,
57
(
1
), pp.
295
298
. 10.1016/j.cirp.2008.03.042
16.
Meya
,
R.
,
Löbbe
,
C.
, and
Tekkaya
,
A. E.
,
2019
, “
Stress State Control by a Novel Bending Process and Its Effect on Damage and Product Performance
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101013
. 10.1115/1.4044394
17.
Qian
,
Z.
,
Wang
,
C.
,
An
,
K.
,
Meehan
,
P. A.
,
Daniel
,
W. J. T.
, and
Ding
,
S.
,
2019
, “
Investigation of the Forming Load in the Chain-Die Forming Process
,”
J. Manuf. Process
,
45
, pp.
70
82
. 10.1016/j.jmapro.2019.06.031
18.
Barabash
,
A.
,
Gavril’chenko
,
E. Y.
,
Gribkov
,
E. P.
, and
Markov
,
O. E.
,
2014
, “
Straightening of Sheet With Correction of Waviness
,”
Steel Transl.
,
44
(
12
), pp.
916
920
. 10.3103/S096709121412002X
19.
Cao
,
J.
, and
Banu
,
M.
,
2020
, “
Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110813
. 10.1115/1.4047732
20.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
21.
Schedin
,
E.
,
1994
, “
Galling Mechanisms in Sheet Forming Operations
,”
Wear
,
179
(
1–2
), pp.
123
128
. 10.1016/0043-1648(94)90229-1
You do not currently have access to this content.