Abstract

In recent years, the development of new, increasingly resistant materials limit machining productivity. This observation is especially true for titanium alloys. The state-of-the-art shows that one of the phenomena responsible for tool wear is temperature. The high temperature is explained by the low thermal conductivity of the alloy and its high mechanical properties. Consequently, high temperatures generated when cutting speeds are increasing lead to very rapid wear phenomena. However in milling, the period during which the insert is not in contact with the material may allow it to cool but its effect is not clearly established. In order to correlate tool wear and cutting temperatures in milling, an experimental bench has been developed. In turning and therefore with a fixed tool, the milling conditions are recreated and allow to measure the temperatures on the cutting face. Two parameters were tested: (i) radial depth, which influences the tooth stress time, and (ii) the cutting speed, which is the fundamental parameter of the cutting temperature. Experimentally, it appears that increasing radial engagement and cutting speed reduces tool life and increases temperatures. However, the phenomenological analysis is not immediate. The relationship between these phenomena is based on a heat balance of the cutting process. The use of an infrared (IR) camera in this problem and a specific analysis method allow observing the temperature gradients on the cutting face making the analysis more robust compared to the thermocouple technic. It thus appears that the increase in radial engagement leads to a higher tool temperature, but the analyses show above all a higher temperature within the insert and therefore more difficult to evacuate.

References

1.
Corduan
,
N.
,
Himbart
,
T.
,
Poulachon
,
G.
,
Dessoly
,
M.
,
Lambertin
,
M.
,
Vigneau
,
J.
, and
Payoux
,
B.
,
2003
, “
Wear Mechanisms of New Tool Materials for Ti-6AI-4V High Performance Machining
,”
CIRP Ann. Manuf. Technol.
,
52
(
1
), pp.
73
76
. 10.1016/S0007-8506(07)60534-4
2.
Ramirez
,
C.
,
2017
, “
Critères D’optimisation Des Alliages De TITane Pouraméliorer Leur USinabilité
,”
PhD thesis
,
ENSAM
,
Paris
.
3.
Hartung
,
P. D.
,
Kramer
,
B. M.
, and
Turkovich
,
B. F. V.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann. Manuf. Technol.
,
31
(
1
), pp.
75
80
. 10.1016/S0007-8506(07)63272-7
4.
Liang
,
L.
,
Liu
,
X.
,
Li
,
X. Q.
, and
Li
,
Y. Y.
,
2015
, “
Wear Mechanisms of WC-10Ni3Al Carbide Tool in Dry Turning of Ti6Al4V
,”
Int. J. Refract. Metals Hard Mater.
,
48
, pp.
272
285
. 10.1016/j.ijrmhm.2014.09.019
5.
Molinari
,
A.
, and
Nouari
,
M.
,
2002
, “
Modeling of Tool Wear by Diffusion in Metal Cutting
,”
Wear
,
252
(
1–2
), pp.
135
149
. 10.1016/S0043-1648(01)00858-4
6.
Davies
,
M. A.
,
Ueda
,
T.
,
M’saoubi
,
R.
,
Mullany
,
B.
, and
Cooke
,
A. L.
,
2007
, “
On the Measurement of Temperature in Material Removal Processes
,”
CIRP Ann.
,
56
(
2
), pp.
581
604
. 10.1016/j.cirp.2007.10.009
7.
Chinchanikar
,
S.
, and
Choudhury
,
S. K.
,
2014
, “
Evaluation of Chip–Tool Interface Temperature: Effect of Tool Coating and Cutting Parameters During Turning Hardened AISI 4340 Steel
,”
Proc. Mater. Sci.
,
6
, pp.
996
1005
. 10.1016/j.mspro.2014.07.170
8.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process–Part 3: Cutting Temperature and Crater Wear of Carbide Tool
,”
ASME J. Eng. Ind.
,
100
(
2
), pp.
236
243
. 10.1115/1.3439415
9.
Gosai
,
M.
, and
Bhavsar
,
S. N.
,
2016
, “
Experimental Study on Temperature Measurement in Turning Operation of Hardened Steel (EN36)
,”
Proc. Technol.
,
23
, pp.
311
318
. 10.1016/j.protcy.2016.03.032
10.
Lequien
,
P.
,
2017
, “
Etude Fondamentale De L’assistance Cryogénique Pour Application Au Fraisage Du Ti6Al4V
,”
PhD thesis
,
ENSAM
,
Paris
.
11.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
. 10.1016/S0043-1648(96)07255-9
12.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2018
, “
A Coupled In-Situ Measurement of Temperature and Kinematic Fields in Ti-6Al-4V Serrated Chip Formation at Micro-Scale
,”
Int. J. Mach. Tools Manuf.
,
130–131
, pp.
20
35
. 10.1016/j.ijmachtools.2018.03.003
13.
M’Saoubi
,
R.
, and
Chandrasekaran
,
H.
,
2011
, “
Experimental Study and Modelling of Tool Temperature Distribution in Orthogonal Cutting of AISI 316L and AISI 3115 Steels
,”
Int. J. Adv. Manuf. Technol.
,
56
(
9–12
), pp.
865
877
. 10.1007/s00170-011-3257-y
14.
Dewes
,
R. C.
,
Ng
,
E.
,
Chua
,
K. S.
,
Newton
,
P. G.
, and
Aspinwall
,
D. K.
,
1999
, “
Temperature Measurement When High Speed Machining Hardened Mould/Die Steel
,”
J. Mater. Process. Technol.
,
92
, pp.
293
301
. 10.1016/S0924-0136(99)00116-8
15.
Armendia
,
M.
,
Garay
,
A.
,
Iriarte
,
L.-M.
, and
Arrazola
,
P.-J.
,
2010
, “
Comparison of the Machinabilities of Ti6Al4V and TIMETAL 54M Using Uncoated WC-Co Tools
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
197
203
. 10.1016/j.jmatprotec.2009.08.026
16.
Karaguzel
,
U.
, and
Budak
,
E.
,
2018
, “
Investigating Effects of Milling Conditions on Cutting Temperatures Through Analytical and Experimental Methods
,”
J. Mater. Process. Technol.
,
262
, pp.
532
540
. 10.1016/j.jmatprotec.2018.07.024
17.
Varghese
,
V.
,
Chakradhar
,
D.
, and
Ramesh
,
M.
,
2018
, “
Micro-Mechanical Characterization and Wear Performance of TiAlN/NbN PVD Coated Carbide Inserts During End Milling of AISI 304 Austenitic Stainless Steel
,”
Mater. Today: Proc.
,
5
(
5
), pp.
12855
12862
. 10.1016/j.matpr.2018.02.270
18.
N. F. E. 66-520-1
,
Standard: Working Zones of Cutting Tools – Couple Tool-Material
.
19.
Soler
,
D.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Arrazola
,
P.-J.
,
2015
, “
Uncertainty of Temperature Measurements in Dry Orthogonal Cutting of Titanium Alloys
,”
Infrared Phys. Technol.
,
71
, pp.
208
216
. 10.1016/j.infrared.2015.04.001
20.
M’Saoubi
,
R.
,
Calvez
,
C. L.
,
Changeux
,
B.
, and
Lebrun
,
J.-L.
,
2002
, “
Thermal and Microstructural Analysis of Orthogonal Cutting of a Low Alloyed Carbon Steel Using an Infrared–Charge-Coupled Device Camera Technique
,”
Proc. Inst. Mech. Eng. B
,
216
(
2
), pp.
153
165
. 10.1243/0954405021519807
21.
Baili
,
M.
,
Wagner
,
V.
,
Dessein
,
G.
,
Sallaberry
,
J.
, and
Lallement
,
D.
,
2011
, “
An Experimental Investigation of Hot Machining With Induction to Improve Ti-5553 Machinability
,”
Appl. Mech. Mater.
,
62
, pp.
67
76
. https://doi.org/10.4028/www.scientific.net/AMM.62.67
22.
Arrazola
,
P.-J.
,
Garay
,
A.
,
Iriarte
,
L.-M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Le Maître
,
F.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555.3)
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2223
2230
. 10.1016/j.jmatprotec.2008.06.020
23.
Ueda
,
T.
,
Hosokawa
,
A.
,
Oda
,
K.
, and
Yamada
,
K.
,
2001
, “
Temperature on Flank Face of Cutting Tool in High Speed Milling
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
37
40
. 10.1016/S0007-8506(07)62065-4
24.
Haddag
,
B.
,
Atlati
,
S.
,
Nouari
,
M.
, and
Zenasni
,
M.
,
2015
, “
Analysis of the Heat Transfer at the Tool–Workpiece Interface in Machining: Determination of Heat Generation and Heat Transfer Coefficients
,”
Heat Mass Transfer/Waerme- und Stoffuebertragung
,
51
(
10
), pp.
1355
1370
. 10.1007/s00231-015-1499-1
25.
Armendia
,
M.
,
Garay
,
A.
,
Villar
,
A.
,
Davies
,
M. A.
, and
Arrazola
,
P. J.
,
2010
, “
High Bandwidth Temperature Measurement in Interrupted Cutting of Difficult to Machine Materials
,”
CIRP Ann.
,
59
(
1
), pp.
97
100
. 10.1016/j.cirp.2010.03.059
26.
Wagner
,
V.
,
Barelli
,
F.
,
Dessein
,
G.
,
Laheurte
,
R.
,
Darnis
,
P.
,
Cahuc
,
O.
, and
Mousseigne
,
M.
,
2018
, “
Thermal and Microstructure Study of the Chip Formation During Turning of Ti64 β Lamellar Titanium Structure
,”
J. Manuf. Sci. Eng. Trans. ASME
,
140
(
3
), pp.
031010
. 10.1115/1.4038597
27.
Wagner
,
V.
,
Baili
,
M.
, and
Dessein
,
G.
,
2015
, “
The Relationship Between the Cutting Speed, Tool Wear, and Chip Formation During Ti-5553 Dry Cutting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
893
912
. 10.1007/s00170-014-6326-1
28.
Nouari
,
M.
,
Calamaz
,
M.
, and
Girot
,
F.
,
2008
, “
Mécanismes d’usure des outils coupants en usinage à sec de l’alliage de titane aéronautique Ti–6Al–4V
,”
Comptes Rendus Mécanique
,
336
(
10
), pp.
772
781
. https://doi.org/10.1016/j.crme.2008.07.007
29.
Nouari
,
M.
, and
Makich
,
H.
,
2013
, “
Experimental Investigation on the Effect of the Material Microstructure on Tool Wear When Machining Hard Titanium Alloys: Ti-6Al-4V and Ti-555
,”
Int. J. Refract. Metals Hard Mater.
,
41
, pp.
259
269
. 10.1016/j.ijrmhm.2013.04.011
30.
Jawaid
,
A.
,
Sharif
,
S.
, and
Koksal
,
S.
,
2000
, “
Evaluation of Wear Mechanisms of Coated Carbide Tools When Face Milling Titanium Alloy
,”
J. Mater. Process. Technol.
,
99
(
1–3
), pp.
266
274
. 10.1016/S0924-0136(99)00438-0
31.
Ramirez
,
C.
,
Idhil Ismail
,
A.
,
Gendarme
,
C.
,
Dehmas
,
M.
,
Aeby-Gautier
,
E.
,
Poulachon
,
G.
, and
Rossi
,
F.
,
2017
, “
Understanding the Diffusion Wear Mechanisms of WC-10%Co Carbide Tools During Dry Machining of Titanium Alloys
,”
Wear
,
390–391
, pp.
61
70
. 10.1016/j.wear.2017.07.003
32.
Oraby
,
S. E.
, and
Alaskari
,
A. M.
,
2011
, “
Mathematical Modeling Experimental Approach of the Friction on the Tool–Chip Interface of Multicoated Carbide Turning Inserts
,”
Int. Scholar. Sci. Res. Innov.
,
5
(
3
), pp.
633
643
.
33.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2008
, “
Contact Length Prediction: Mathematical Models and Effect of Friction Schemes on FEM Simulation for Conventional to HSM of AISI 1045 Steel
,”
Int. J. Mach. Machinab. Mater.
,
3
(
1–2
), pp.
18
33
.
You do not currently have access to this content.