Abstract

Ultrasonic vibration-assisted (UV-A) directed energy deposition (DED) has become a promising technology to improve the as-built quality and mechanical performance of metal parts. Ultrasonic frequency, a critical parameter of the ultrasonic vibration, can remarkably affect the ultrasonic vibration behaviors in assisting DED processes. However, leveraging varied ultrasonic frequencies in UV-A DED attracts little attention, and the effects of ultrasonic frequency have been thus overlooked. Linking ultrasonic frequency and part performance emphasizes the need for an understanding of the underlying thermodynamics in the melt pool due to the key role of thermal history in the DED process. In this work, we fabricated Inconel 718 (IN718) parts using the UV-A DED process under different levels of ultrasonic vibration frequency (including 0, 25 kHz, 33 kHz, and 41 kHz). For the first time, melt pool size, temperature distribution, and peak temperature within the melt pool, as well as the peak temperature fluctuation within a layer deposition, were studied. Porosity and thermal-dependent properties including grain size and microhardness were also investigated. The results indicated that the increase in ultrasonic frequency led to an increase in both melt pool size and peak temperature. Moreover, the lowest porosity was obtained at an ultrasonic frequency of 25 kHz, while grain refinement and microhardness enhancement were achieved at the highest frequency of 41 kHz. This investigation provides great insights into the link among ultrasonic frequency, melt pool formation, temperature field, porosity, and thermal-dependent properties in the UV-A DED-built IN718 parts.

References

1.
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Keist
,
J.
, and
Nassar
,
A. R.
,
2016
, “
Predicting Microstructure From Thermal History During Additive Manufacturing for Ti-6Al-4V
,”
J. Manuf. Sci. Eng.
,
138
(
11
), p.
111007
. 10.1115/1.4033525
2.
Thomas
,
D. S.
, and
Gilbert
,
S. W.
,
2014
,
Costs and Cost Effectiveness of Additive Manufacturing: a Literature Review and Discussion
, Vol.
1176
,
National Institute of Standards and Technology (NIST) Special Publication
, pp.
1
77
.
3.
Gu
,
D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
. 10.1179/1743280411Y.0000000014
4.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
(
2
), pp.
713
721
. 10.1016/j.jallcom.2013.09.171
5.
Bennett
,
J. L.
,
Wolff
,
S. J.
,
Hyatt
,
G.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2017
, “
Thermal Effect on Clad Dimension for Laser Deposited Inconel 718
,”
J. Manuf. Process.
,
28
(
8
), pp.
550
557
. 10.1016/j.jmapro.2017.04.024
6.
Zhong
,
C.
,
Gasser
,
A.
,
Kittel
,
J.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2016
, “
Improvement of Material Performance of Inconel 718 Formed by High Deposition-Rate Laser Metal Deposition
,”
Mater. Des.
,
98
, pp.
128
134
. 10.1016/j.matdes.2016.03.006
7.
Liu
,
F.
,
Lin
,
X.
,
Yang
,
G.
,
Song
,
M.
,
Chen
,
J.
, and
Huang
,
W.
,
2011
, “
Microstructure and Residual Stress of Laser Rapid Formed Inconel 718 Nickel-Base Superalloy
,”
Opt. Laser. Technol.
,
43
(
1
), pp.
208
213
. 10.1016/j.optlastec.2010.06.015
8.
Parimi
,
L. L.
,
Ravi
,
G.
,
Clark
,
D.
, and
Attallah
,
M. M.
,
2014
, “
Microstructural and Texture Development in Direct Laser Fabricated IN718
,”
Mater. Charact.
,
89
(
3
), pp.
102
111
. 10.1016/j.matchar.2013.12.012
9.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Martínez
,
S.
,
Ukar
,
E.
, and
Figueras
,
J.
,
2011
, “
Evaluation of the Mechanical Properties of Inconel 718 Components Built by Laser Cladding
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
465
470
. 10.1016/j.ijmachtools.2011.02.003
10.
Zhang
,
Q.
,
Yao
,
J.
, and
Mazumder
,
J.
,
2011
, “
Laser Direct Metal Deposition Technology and Microstructure and Composition Segregation of Inconel 718 Superalloy
,”
J. Iron Steel Res. Int.
,
18
(
4
), pp.
73
78
. 10.1016/S1006-706X(11)60054-X
11.
Zhao
,
X.
,
Chen
,
J.
,
Lin
,
X.
, and
Huang
,
W.
,
2008
, “
Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718
,”
Mater. Sci. Eng. A
,
478
(
1
), pp.
119
124
. 10.1016/j.msea.2007.05.079
12.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
. 10.1007/s11661-009-9949-3
13.
Lambarri
,
J.
,
Leunda
,
J.
,
Navas
,
V. G.
,
Soriano
,
C.
, and
Sanz
,
C.
,
2013
, “
Microstructural and Tensile Characterization of Inconel 718 Laser Coatings for Aeronautic Components
,”
Opt. Laser Eng.
,
51
(
7
), pp.
813
821
. 10.1016/j.optlaseng.2013.01.011
14.
Cao
,
G.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
J. Manuf. Sci. Eng.
,
130
(
3
), pp.
031105
031110
. 10.1115/1.2823086
15.
Patarić
,
A.
,
Mihailović
,
M.
, and
Gulišija
,
Z.
,
2012
, “
Quantitative Metallographic Assessment of the Electromagnetic Casting Influence on the Microstructure of 7075 Al Alloy
,”
J. Mater. Sci.
,
47
(
2
), pp.
793
796
. 10.1007/s10853-011-5855-3
16.
Kore
,
S. D.
,
Date
,
P.
,
Kulkarni
,
S.
,
Kumar
,
S.
,
Rani
,
D.
,
Kulkarni
,
M.
,
Desai
,
S.
,
Rajawat
,
R.
,
Nagesh
,
K.
, and
Chakravarty
,
D.
,
2011
, “
Application of Electromagnetic Impact Technique for Welding Copper-to-Stainless Steel Sheets
,”
Int. J. Adv. Manuf. Tech.
,
54
(
9
), pp.
949
955
. 10.1007/s00170-010-2981-z
17.
Sun
,
Q.
,
Lin
,
S.
,
Yang
,
C.
, and
Zhao
,
G.
,
2009
, “
Penetration Increase of AISI 304 Using Ultrasonic Assisted Tungsten Inert Gas Welding
,”
Sci. Technol. Weld. Joining
,
14
(
8
), pp.
765
767
. 10.1179/136217109X12505932584772
18.
Ezatpour
,
H. R.
,
Sajjadi
,
S. A.
,
Sabzevar
,
M. H.
, and
Huang
,
Y.
,
2014
, “
Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting
,”
Mater. Des.
,
55
(
3
), pp.
921
928
. 10.1016/j.matdes.2013.10.060
19.
Xue
,
P.
,
Ni
,
D.
,
Wang
,
D.
,
Xiao
,
B.
, and
Ma
,
Z.
,
2011
, “
Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al–Cu Joints
,”
Mater. Sci. Eng. A
,
528
(
13
), pp.
4683
4689
. 10.1016/j.msea.2011.02.067
20.
Komarov
,
S. V.
,
Kuwabara
,
M.
, and
Abramov
,
O. V.
,
2005
, “
High Power Ultrasonics in Pyrometallurgy: Current Status and Recent Development
,”
ISIJ Int.
,
45
(
12
), pp.
1765
1782
. 10.2355/isijinternational.45.1765
21.
Abramov
,
O.
,
1987
, “
Action of High Intensity Ultrasound on Solidifying Metal
,”
Ultrasonics
,
25
(
2
), pp.
73
82
. 10.1016/0041-624X(87)90063-1
22.
Ning
,
F. D.
,
Hu
,
Y. B.
,
Liu
,
Z. C.
,
Wang
,
X. L.
,
Li
,
Y. Z.
, and
Cong
,
W. L.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061012
. 10.1115/1.4039441
23.
Todaro
,
C. J.
,
Easton
,
M. A.
,
Qiu
,
D.
,
Zhang
,
D.
,
Bermingham
,
M. J.
,
Lui
,
E. W.
,
Brandt
,
M.
,
StJohn
,
D. H.
, and
Qian
,
M.
,
2020
, “
Grain Structure Control During Metal 3D Printing by High-Intensity Ultrasound
,”
Nat. Commun.
,
11
(
142
), pp.
1
9
. 10.1038/s41467-019-13874-z
24.
Wu
,
W.
,
2000
, “
Influence of Vibration Frequency on Solidification of Weldments
,”
Scr. Mater.
,
42
(
7
), pp.
661
665
. 10.1016/S1359-6462(99)00416-9
25.
Wang
,
H.
,
Hu
,
Y. B.
,
Ning
,
F. D.
, and
Cong
,
W. L.
,
2020
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Effects of Ultrasonic Frequency on Microstructural and Mechanical Properties
,”
J. Mater. Process. Technol.
,
276
(
2
), p.
116395
. 10.1016/j.jmatprotec.2019.116395
26.
Kieruj
,
P.
,
Przestacki
,
D.
, and
Chwalczuk
,
T.
,
2016
, “
Determination of Emissivity Coefficient of Heat-Resistant Super Alloys and Cemented Carbide
,”
Arch. Mech. Technol. Mater.
,
36
(
1
), pp.
30
34
. 10.1515/amtm-2016-0006
27.
ASTM E112-13
,
2013
,
Standard Test Methods for Determining Average Grain Size
,
ASTM International
,
West Conshohocken, PA
.
28.
Gallego-Juárez
,
J. A.
, and
Graff
,
K. F.
,
2014
,
Power Ultrasonics, Applications of High-Intensity Ultrasound
,
Elsevier
,
New York
.
29.
Mørch
,
K. A.
,
2007
, “
Reflections on Cavitation Nuclei in Water
,”
Phys. Fluids
,
19
(
7
), p.
072104
. 10.1063/1.2747210
30.
Lauterborn
,
W.
,
Kurz
,
T.
,
Geisler
,
R.
,
Schanz
,
D.
, and
Lindau
,
O.
,
2007
, “
Acoustic Cavitation, Bubble Dynamics and Sonoluminescence
,”
Ultrason. Sonochem.
,
14
(
4
), pp.
484
491
. 10.1016/j.ultsonch.2006.09.017
31.
Kanegsberg
,
B.
, and
Kanegsberg
,
E.
,
2011
,
Handbook for Critical Cleaning: Applications, Processes, and Controls
,
CRC Press
,
Boca Raton, FL
.
32.
Suslick
,
K. S.
, and
Price
,
G. J.
,
1999
, “
Applications of Ultrasound to Materials Chemistry,” Annual Rev
,”
Mater. Sci.
,
29
(
1
), pp.
295
326
. 10.1146/annurev.matsci.29.1.295
33.
Krefting
,
D.
,
Mettin
,
R.
, and
Lauterborn
,
W.
,
2003
, “
Single-Bubble Sonoluminescence in Air-Saturated Water
,”
Phys. Rev. Lett.
,
91
(
17
), p.
174301
. 10.1103/PhysRevLett.91.174301
34.
Koch
,
P.
,
Kurz
,
T.
,
Parlitz
,
U.
, and
Lauterborn
,
W.
,
2011
, “
Bubble Dynamics in a Standing Sound Field: The Bubble Habitat
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
3370
3378
. 10.1121/1.3626159
35.
Rae
,
J.
,
Ashokkumar
,
M.
,
Eulaerts
,
O.
,
von Sonntag
,
C.
,
Reisse
,
J.
, and
Grieser
,
F.
,
2005
, “
Estimation of Ultrasound Induced Cavitation Bubble Temperatures in Aqueous Solutions
,”
Ultrason. Sonochem.
,
12
(
5
), pp.
325
329
. 10.1016/j.ultsonch.2004.06.007
36.
Mills
,
K. C.
,
2012
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
37.
Susan
,
D.
,
Puskar
,
J.
,
Brooks
,
J.
, and
Robino
,
C. V.
,
2006
, “
Quantitative Characterization of Porosity in Stainless Steel LENS Powders and Deposits
,”
Mater. Charact.
,
57
(
1
), pp.
36
43
. 10.1016/j.matchar.2005.12.005
38.
Yan
,
Z.
,
Li
,
X.
,
Cao
,
Z.
,
Zhang
,
X.
, and
Li
,
T.
,
2008
, “
Grain Refinement of Horizontal Continuous Casting of the CuNi10Fe1Mn Alloy Hollow Billets by Rotating Magnetic Field (RMF)
,”
Mater. Lett.
,
62
(
28
), pp.
4389
4392
. 10.1016/j.matlet.2008.07.010
39.
Chen
,
X.
,
Le
,
Q.
,
Wang
,
X.
,
Liao
,
Q.
, and
Chu
,
C.
,
2017
, “
Variable-Frequency Ultrasonic Treatment on Microstructure and Mechanical Properties of ZK60 Alloy During Large Diameter Semi-Continuous Casting
,”
Metals
,
7
(
5
), pp.
173
185
. 10.3390/met7050173
40.
Zheng
,
Z.
,
2005
,
Fundamentals of Materials Science
,
Central South University Press
,
Changsha, China
.
41.
Wang
,
G.
,
Dargusch
,
M.
,
Qian
,
M.
,
Eskin
,
D.
, and
StJohn
,
D. H.
,
2014
, “
The Role of Ultrasonic Treatment in Refining the As-Cast Grain Structure During the Solidification of an Al–2Cu Alloy
,”
J. Cryst. Growth
,
408
(
12
), pp.
119
124
. 10.1016/j.jcrysgro.2014.09.018
42.
Srivastava
,
N.
,
Chaudhari
,
G.
, and
Qian
,
M.
,
2017
, “
Grain Refinement of Binary Al-Si, Al-Cu and Al-Ni Alloys by Ultrasonication
,”
J. Mater. Process. Technol.
,
249
(
11
), pp.
367
378
. 10.1016/j.jmatprotec.2017.06.024
You do not currently have access to this content.