Production of functionally graded materials (FGMs, i.e., a gradual transition from one material to another) and components is challenging using conventional manufacturing techniques. Additive manufacturing (AM) provides a new opportunity for producing FGMs. However, current metal AM technologies including powder-bed fusion are limited to producing single material components or vertical FGM parts, i.e., a different material composition in different layers but not within the same layer, and in situ changing materials is challenging. In this paper, we demonstrate the fabrication of horizontal and 3D 316L/Cu10Sn components with FGM within the same layer and in different layers, via a proprietary multiple selective powder delivery array device incorporated into a selective laser melting system that allowed the deposition of up to six different materials point by point. The manufactured component macrostructure, microstructure, microhardness, and phases were examined. Smooth transition from one material to the other was realized. Also, an interesting phenomenon was found that the maximum hardness was at 50% 316L and 50% Cu10Sn. The work would open up a new opportunity for the manufacturing of true 3D functionally graded components using additive manufacturing and for the rapid development of new metal alloy systems.

References

1.
Cannillo
,
V.
,
Lusvarghi
,
L.
,
Siligardi
,
C.
, and
Sola
,
A.
,
2007
, “
Prediction of the Elastic Properties Profile in Glass-Alumina Functionally Graded Materials
,”
J. Eur. Ceram. Soc.
,
27
(
6
), pp.
2393
2400
.
2.
Kawasaki
,
A.
, and
Watanabe
,
R.
,
1997
, “
Concept and P/M Fabrication of Functionally Gradient Materials
,”
Ceram. Int.
,
23
(
1
), pp.
73
83
.
3.
Naebe
,
M.
, and
Shirvanimoghaddam
,
K.
,
2016
, “
Functionally Graded Materials: A Review of Fabrication and Properties
,”
Appl. Mater. Today
,
5
(
1
), pp.
223
245
.
4.
Türk
,
D.-A.
,
Ebnöther
,
A.
,
Zogg
,
M.
, and
Meboldt
,
M.
,
2018
, “
Additive Manufacturing of Structural Cores and Washout Tooling for Autoclave Curing of Hybrid Composite Structures
,”
J. Manuf. Sci. Eng.
,
140
(
10
), pp.
105001
105014
.
5.
Gardan
,
J.
,
2015
, “
Additive Manufacturing Technologies: State of the Art and Trends
,”
Int. J. Prod. Res.
,
7543
(
10
), pp.
1
15
.
6.
Zhang
,
Binbin
,
Prakhar
,
Jaiswal
,
Rai
,
Rahul
, et al
,
2018
, “
Additive Manufacturing of Functionally Graded Material Objects: A Review
,”
J. Comput. Inf. Sci. Eng.
,
18
(
4
), pp.
041002-01
041002-16
.
7.
Shamvedi
,
D.
,
McCarthy
,
O. J.
,
O’Donoghue
,
E.
,
Danilenkoff
,
C.
,
O’Leary
,
P.
, and
Raghavendra
,
R.
,
2018
, “
3D Metal Printed Heat Sinks With Longitudinally Varying Lattice Structure Sizes Using Direct Metal Laser Sintering
,”
Virtual Phys. Prototyp.
,
13
(
4
), pp.
301
310
.
8.
Zhai
,
Y.
,
Galarraga
,
H.
, and
Lados
,
D. A.
,
2016
, “
Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4 V Fabricated by Additive Manufacturing: LENS and EBM
,”
Eng. Fail. Anal.
,
69
(
1
), pp.
3
14
.
9.
Mahamood
,
R. M.
, and
Akinlabi
,
E. T.
,
2017
, “
Types of Functionally Graded Materials and Their Areas of Application BT—Functionally Graded Materials
,”
Functionally Graded Materials
,
R. M.
Mahamood
, and
E. T.
Akinlabi
, eds.,
Springer International Publishing
,
Cham
, pp.
9
21
.
10.
Li
,
L.
,
Syed
,
W. U. H.
, and
Pinkerton
,
A. J.
,
2006
, “
Rapid Additive Manufacturing of Functionally Graded Structures Using Simultaneous Wire and Powder Laser Deposition
,”
Virtual Phys. Prototyp.
,
1
(
4
), pp.
217
225
.
11.
Li
,
L.
,
Diver
,
C.
,
Atkinson
,
J.
,
Giedl-Wagner
,
R.
, and
Helml
,
H. J.
,
2006
, “
Sequential Laser and EDM Micro-Drilling for Next Generation Fuel Injection Nozzle Manufacture
,”
CIRP Ann.
,
55
(
1
), pp.
179
182
.
12.
Limmahakhun
,
S.
,
2017
,
Development of Functionally Graded Materials for Innovation in Bone-Replacement Applications
,
Queensland University of Technology
,
Brisbane, Queensland, Australia
.
13.
Mahmoud
,
D.
, and
Elbestawi
,
M. A.
,
2017
, “
Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review
,” pp.
1
19
.
14.
Xiao
,
Z.
,
Yang
,
Y.
,
Xiao
,
R.
,
Bai
,
Y.
,
Song
,
C.
, and
Wang
,
D.
,
2018
, “
Evaluation of Topology-Optimized Lattice Structures Manufactured via Selective Laser Melting
,”
Mater. Des.
,
143
(
8
), pp.
27
37
.
15.
Sing
,
S. L.
,
Wiria
,
F. E.
, and
Yeong
,
W. Y.
,
2018
, “
Selective Laser Melting of Lattice Structures: A Statistical Approach to Manufacturability and Mechanical Behavior
,”
Robot. Comput. Integr. Manuf.
,
49
(
2
), pp.
170
180
.
16.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
(
11
), pp.
32
38
.
17.
Sing
,
S. L.
,
Lam
,
L. P.
,
Zhang
,
D. Q.
,
Liu
,
Z. H.
, and
Chua
,
C. K.
,
2015
, “
Interfacial Characterization of SLM Parts in Multi-Material Processing: Intermetallic Phase Formation Between AlSi10Mg and C18400 Copper Alloy
,”
Mater. Charact.
,
107
(
11
), pp.
220
227
.
18.
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Loh
,
L. E.
,
2014
, “
Interfacial Characterization of SLM Parts in Multi-Material Processing: Metallurgical Diffusion Between 316L Stainless Steel and C18400 Copper Alloy
,”
Mater. Charact.
,
94
(
8
), pp.
116
125
.
19.
Wei
,
C.
,
Li
,
L.
,
Zhang
,
X.
, and
Chueh
,
Y. H.
,
2018
, “
3D Printing of Multiple Metallic Materials via Modified Selective Laser Melting
,”
CIRP Ann.
,
67
(
1
), pp.
245
248
.
20.
Wei
,
C.
,
Sun
,
Z.
,
Huang
,
Y.
, and
Li
,
L.
,
2018
, “
Embedding Anti-Counterfeiting Features in Metallic Components via Multiple Material Additive Manufacturing
,”
Addit. Manuf.
,
24
(
9
), pp.
1
12
.
21.
Sola
,
A.
,
Bellucci
,
D.
, and
Cannillo
,
V.
,
2016
, “
Functionally Graded Materials for Orthopedic Applications—An Update on Design and Manufacturing
,”
Biotechnol. Adv.
,
34
(
5
), pp.
504
531
.
22.
Guo
,
C.
,
Ge
,
W.
, and
Lin
,
F.
,
2015
, “
3D Printing—Article Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies
,”
Engineering
,
1
(
1
), pp.
124
130
.
23.
Demir
,
A. G.
, and
Previtali
,
B.
,
2017
, “
Multi-Material Selective Laser Melting of Fe/Al-12Si Components
,”
Manuf. Lett.
,
11
(
9
), pp.
8
11
.
24.
Beal
,
V. E.
,
Erasenthiran
,
P.
,
Hopkinson
,
N.
,
Dickens
,
P.
, and
Ahrens
,
C. H.
,
2006
, “
The Effect of Scanning Strategy on Laser Fusion of Functionally Graded H13/Cu Materials
,”
Int. J. Adv. Manuf. Technol.
,
30
(
9
), pp.
844
852
.
25.
Wei
,
C.
,
Chueh
,
Y.-H.
,
Zhang
,
X.
,
Huang
,
Y.
,
Chen
,
Q.
, and
Li
,
L.
,
2019
, “
Easy-To-Remove Composite Support Material and Procedure in Additive Manufacturing of Metallic Components Using Multiple Material Laser-Based Powder Bed Fusion
,”
J. Manuf. Sci. Eng.
,
141
(
7
), pp.
1
18
.
26.
Zhang
,
X.
,
Wei
,
C.
,
Chueh
,
Y.
, and
Li
,
L.
,
2019
, “
An Integrated Dual Ultrasonic Selective Powder Dispensing Platform for 3D Printing of Multiple Material Metal/Glass Objects in Selective Laser Melting
,”
J. Manuf. Sci. Eng.
,
141
(
1
), pp.
1
12
.
27.
Robinson
,
J. H.
,
Ashton
,
I. R. T.
,
Jones
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C.
,
2018
, “
The Effect of Hatch Angle Rotation on Parts Manufactured Using Selective Laser Melting
,”
Rapid Prototyp. J.
,
25
(
2
), pp.
289
298
.
28.
Parry
,
L. A.
,
Ashcroft
,
I. A.
, and
Wildman
,
R. D.
,
2019
, “
Geometrical Effects on Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
25
(
1
), pp.
166
175
.
29.
Yusuf
,
S.
,
Chen
,
Y.
,
Boardman
,
R.
,
Yang
,
S.
, and
Gao
,
N.
,
2017
, “
Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting
,”
Metals (Basel)
,
7
(
2
), p.
64
.
30.
Čapek
,
J.
,
Machová
,
M.
,
Fousová
,
M.
,
Kubásek
,
J.
,
Vojtěch
,
D.
,
Fojt
,
J.
,
Jablonská
,
E.
,
Lipov
,
J.
, and
Ruml
,
T.
,
2016
, “
Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting
,”
Mater. Sci. Eng. C
,
69
(
12
), pp.
631
639
.
31.
Scudino
,
S.
,
Unterdörfer
,
C.
,
Prashanth
,
K. G.
,
Attar
,
H.
,
Ellendt
,
N.
,
Uhlenwinkel
,
V.
, and
Eckert
,
J.
,
2015
, “
Additive Manufacturing of Cu-10Sn Bronze
,”
Mater. Lett.
,
156
(
10
), pp.
202
204
.
32.
ASM International Handbook Committee
,
2001
,
ASM Speciality Handbook, Copper and Copper Alloys
,
ASM International Handbook Committee
,
Materials Park, OH
.
33.
Peckner
,
D.
, and
Bernstein
,
I. M.
,
1977
,
Handbook of Stainless Steels
,
McGraw-Hill
,
New York, NY
.
34.
Bolton
,
W.
, and
Higgins
,
R. A.
,
2014
,
Materials for Engineers and Technicians
, 6th ed.,
Routledge
,
Abingdon-on-Thames, UK
.
35.
Zietala
,
M.
,
Durejko
,
T.
,
Polanski
,
M.
,
Kunce
,
I.
,
Plocinski
,
T.
,
Zielinski
,
W.
,
Lazinska
,
M.
,
Stepniowski
,
W.
,
Czujko
,
T.
,
Kurzydlowski
,
K. J.
, and
Bojar
,
Z.
,
2016
, “
The Microstructure, Mechanical Properties and Corrosion Resistance of 316 L Stainless Steel Fabricated Using Laser Engineered Net Shaping
,”
Mater. Sci. Eng. A-Structural Mater. Prop. Microstruct. Process.
,
677
(
9
), pp.
1
10
.
36.
Tolosa
,
I.
,
Garciandía
,
F.
,
Zubiri
,
F.
,
Zapirain
,
F.
, and
Esnaola
,
A.
,
2010
, “
Study of Mechanical Properties of AISI 316 Stainless Steel Processed by ‘Selective Laser Melting’, Following Different Manufacturing Strategies
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5
), pp.
639
647
.
37.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2014
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
.
38.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
,
Yadroitsava
,
I.
,
Johansson
,
S.
, and
Smurov
,
I.
,
2013
, “
Journal of Materials Processing Technology Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track From Metallic Powder
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
606
613
.
39.
Saeidi
,
K.
,
Gao
,
X.
,
Zhong
,
Y.
, and
Shen
,
Z. J.
,
2015
, “
Hardened Austenite Steel With Columnar Sub-Grain Structure Formed by Laser Melting
,”
Mater. Sci. Eng. A
,
625
(
11
), pp.
221
229
.
40.
Articek
,
U.
,
Milfelner
,
M.
, and
Anzel
,
I.
,
2013
, “
Synthesis of Functionally Graded Material H13/Cu by LENS Technology
,”
Adv. Prod. Eng. Manag.
,
8
(
3
), pp.
169
176
.
41.
Westbrook
,
J. H.
, and
Fleischer
,
R. L.
, eds.,
2002
,
Intermetallic Compounds, Progress
,
Wiley
,
NY
.
42.
Puttlitz
,
K. J.
, and
Stalter
,
K. A.
,
2004
,
Handbook of Lead-Free Solder Technology for Microelectronic Assemblies
,
Taylor & Francis Inc., CRC Press
,
Boca Raton, FL
.
43.
Shuai
,
C.
,
He
,
C.
,
Xu
,
L.
,
Li
,
Q.
,
Chen
,
T.
,
Yang
,
Y.
, and
Peng
,
S.
,
2018
, “
Wrapping Effect of Secondary Phases on the Grains: Increased Corrosion Resistance of Mg–Al Alloys
,”
Virtual Phys. Prototyp.
,
13
(
4
), pp.
292
300
.
44.
Deng
,
Y.
,
Yang
,
Y.
,
Gao
,
C.
,
Feng
,
P.
,
Guo
,
W.
,
He
,
C.
,
Chen
,
J.
, and
Shuai
,
C.
,
2018
, “
Mechanism for Corrosion Protection of β-TCP Reinforced ZK60 via Laser Rapid Solidification
,”
Int. J. Bioprinting
,
4
(
1
), pp.
1
11
.
You do not currently have access to this content.