Understanding the binder–powder interaction and primitive formation is critical to advancing the binder jetting Additive Manufacturing process and improving the accuracy, precision, and mechanical properties of the printed parts. In this work, the authors propose an experimental approach based on sessile drop goniometry on a powder substrate to characterize the binder wetting powder process. As a binder drop penetrates into a prepared powder substrate, the dynamic contact angle formed in powder pores is calculated based on the measured binder penetration time, and the binder penetration depth is measured from the binder-powder granule retrieved from the powder substrate. Coupled with models of capillary flow, the technique provides a fundamental understanding of the binder–powder interaction that determines the material compatibility and printing parameters in binder jetting. Enabled by this gained understanding, it was determined that suspending nanoparticles in a binder could increase the capillary-driven penetration depth, which was then reduced by the further increase of the nanoparticle solid loading and resultant binder viscosity.

References

1.
Vaezi
,
M.
, and
Chua
,
C. K.
,
2011
, “
Effects of Layer Thickness and Binder Saturation Level Parameters on 3D Printing Process
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
275
284
.
2.
Castilho
,
M.
,
Gouveia
,
B.
,
Pires
,
I.
,
Rodrigues
,
J.
, and
Pereira
,
M.
,
2015
, “
The Role of Shell/Core Saturation Level on the Accuracy and Mechanical Characteristics of Porous Calcium Phosphate Models Produced by 3Dprinting
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
43
55
.
3.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.
4.
Denesuk
,
M.
,
Smith
,
G. L.
,
Zelinski
,
B. J. J.
,
Kreidl
,
N. J.
, and
Uhlmann
,
D. R.
,
1993
, “
Capillary Penetration of Liquid Droplets Into Porous Materials
,”
J. Colloid Interface Sci.
,
158
(
1
), pp.
114
120
.
5.
Hapgood
,
K. P.
,
Litster
,
J. D.
,
Biggs
,
S. R.
, and
Howes
,
T.
,
2002
, “
Drop Penetration Into Porous Powder Beds
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
353
366
.
6.
Markicevic
,
B.
,
D'Onofrio
,
T. G.
, and
Navaz
,
H. K.
,
2010
, “
On Spread Extent of Sessile Droplet Into Porous Medium: Numerical Solution and Comparisons With Experiments
,”
Phys. Fluids
,
22
(
1
), p.
012103
.
7.
Holman
,
R. K.
,
Cima
,
M. J.
,
Uhland
,
S. A.
, and
Sachs
,
E.
,
2002
, “
Spreading and Infiltration of Inkjet-Printed Polymer Solution Droplets on a Porous Substrate
,”
J. Colloid Interface Sci.
,
249
(
2
), pp.
432
440
.
8.
Miyanaji
,
H.
,
Zhang
,
S.
, and
Yang
,
L.
,
2018
, “
A New Physics-Based Model for Equilibrium Saturation Determination in Binder Jetting Additive Manufacturing Process
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
1
11
.
9.
Cima
,
M. J.
,
Lauder
,
A.
,
Khanuja
,
S.
, and
Sachs
,
E.
,
1992
, “
Microstructural Elements of Components Derived From 3D Printing
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 3–5, pp.
220
227
.
10.
Utela
,
B. R.
,
Storti
,
D.
,
Anderson
,
R. L.
, and
Ganter
,
M.
,
2010
, “
Development Process for Custom Three-Dimensional Printing (3DP) Material Systems
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011008
.
11.
Bai
,
J. G.
,
Creehan
,
K. D.
, and
Kuhn
,
H. A.
,
2007
, “
Inkjet Printable Nanosilver Suspensions for Enhanced Sintering Quality in Rapid Manufacturing
,”
Nanotechnol.
,
18
(
18
), p.
185701
.
12.
Bai
,
Y.
, and
Williams
,
C. B.
,
2018
, “
The Effect of Inkjetted Nanoparticles on Metal Part Properties in Binder Jetting Additive Manufacturing
,”
Nanotechnol.
29
(39), p.
395706
.
13.
Mueller
,
S.
,
Llewellin
,
E. W.
, and
Mader
,
H. M.
,
2010
, “
The Rheology of Suspensions of Solid Particles
,”
Proc. R. Soc. A Math. Phys. Eng. Sci
,
466
(
2116
), pp.
1201
1228
.
14.
Stickel
,
J. J.
, and
Powell
,
R. L.
,
2005
, “
Fluid Mechanics and Rheology of Dense Suspensions
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
129
149
.
15.
Coussot
,
P.
, and
Ancey
,
C.
,
1999
, “
Rheophysical Classification of Concentrated Suspensions and Granular Pastes
,”
Phys. Rev. E - Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
,
59
(
4
), pp.
4445
4457
.
16.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
137
152
.
17.
Schramm
,
L. L.
, and
Hepler
,
L. G.
,
1994
, “
Surface and Interfacial Tensions of Aqueous Dispersions of Charged Colloidal (Clay) Particles
,”
Can. J. Chem.
,
72
(
9
), pp.
1915
1920
.
18.
Tanvir
,
S.
, and
Qiao
,
L.
,
2012
, “
Surface Tension of Nanofluid-Type Fuels Containing Suspended Nanomaterials
,”
Nanoscale Res. Lett.
,
7
, p. 226.
19.
Murshed
,
S. M. S.
,
Tan
,
S. H.
, and
Nguyen
,
N. T.
,
2008
, “
Temperature Dependence of Interfacial Properties and Viscosity of Nanofluids for Droplet-Based Microfluidics
,”
J. Phys. D. Appl. Phys.
,
41
, p. 085502.
20.
Chen
,
R. H.
,
Phuoc
,
T. X.
, and
Martello
,
D.
,
2011
, “
Surface Tension of Evaporating Nanofluid Droplets
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2459
2466
.
21.
Vafaei
,
S.
,
Purkayastha
,
A.
,
Jain
,
A.
,
Ramanath
,
G.
, and
Borca-Tasciuc
,
T.
,
2009
, “
The Effect of Nanoparticles on the Liquid-Gas Surface Tension of Bi2Te3 Nanofluids
,”
Nanotechnol.
,
20
(
18
), p.
185702
.
22.
Dong
,
L.
, and
Johnson
,
D.
,
2003
, “
Surface Tension of Charge-Stabilized Colloidal Suspensions at the Water-Air Interface
,”
Langmuir
,
19
(
24
), pp.
10205
10209
.
23.
Bredt
,
J. F.
,
1995
, “
Binder Stability and Powder-Binder Interaction in Three Dimensional Printing
,”
Ph.D. dissertation
, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/10999
24.
Wolansky
,
G.
, and
Marmur
,
A.
,
1998
, “
The Actual Contact Angle on a Heterogeneous Rough Surface in Three Dimensions
,”
Langmuir
,
14
(
18
), pp.
5292
5297
.
25.
Alghunaim
,
A.
,
Kirdponpattara
,
S.
, and
Newby
,
B. M. Z.
,
2016
, “
Techniques for Determining Contact Angle and Wettability of Powders
,”
Powder Technol.
,
287
, pp.
201
215
.
26.
Middleman
,
S.
,
1995
,
Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops
,
Academic Press
, Cambridge, MA.
27.
Rillaerts
,
E.
, and
Joos
,
P.
, 1979, “
The Dynamic Contact Angle
,”
Chem. Eng. Sci.
,
35
(
4
), pp.
883
887
.
28.
Moseley
,
W. A.
, and
Dhir
,
V. K.
,
1996
, “
Capillary Pressure-Saturation Relations in Porous Media Including the Effect of Wettability
,”
J. Hydrol.
,
178
(
1–4
), pp.
33
53
.
29.
Miyanaji
,
H.
, and
Yang
,
L.
,
2016
, “
Equilibrium Saturation in Binder Jetting Additive Manufacturing Processes: Theoretical Model Vs. Experimental Observations
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 7–10, pp. 1945–1959http://sffsymposium.engr.utexas.edu/sites/default/files/2016/157-Miyanaji.pdf.
30.
Bai
,
Y.
, and
Williams
,
C. B.
,
2017
, “
Binderless Jetting: Additive Manufacturing of Metal Parts Via Jetting Nanoparticles
,”
International Solid Freeform Fabrication
, Austin, TX, Aug. 7–9, pp. 249–260.http://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/BinderlessJettingAdditiveManufacturingofMeta.pdf
31.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
.
32.
Liu
,
J.
,
Kuhn
,
H.
,
Rynerson
,
M.
, and
Morvan
,
S.
,
2004
, “
Binder Technology for Large Metal Parts Produced Using Three-Dimensional Printing
,”
Euro PM2004
, pp.
153
159
.
33.
Derby
,
B.
, and
Reis
,
N.
,
2003
, “
Inkjet Printing of Highly Loaded Particulate Suspensions
,”
MRS Bull.
,
28
(
11
), pp.
815
818
.
34.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(8), p. 081019.
35.
Link
,
K. C.
, and
Schlünder
,
E.-U.
,
1996
, “
A New Method for the Characterisation of the Wettability of Powders
,”
Chem. Eng. Technol.
,
19
(
5
), pp.
432
437
.
36.
Hapgood
,
K. P.
,
Farber
,
L.
, and
Michaels
,
J. N.
,
2009
, “
Agglomeration of Hydrophobic Powders Via Solid Spreading Nucleation
,”
Powder Technol.
,
188
(
3
), pp.
248
254
.
37.
Casson
,
K.
, and
Johnson
,
D.
,
2001
, “
Surface-Tension-Driven Flow Due to the Adsorption and Desorption of Colloidal Particles
,”
J. Colloid Interface Sci.
,
242
(
2
), pp.
279
283
..
You do not currently have access to this content.