The evolution of the manufacturing industry has favored the use of new technologies that increase the level of autonomy in production systems. The work presented shows a methodology that allows for online estimation of cutting parameters based on the analysis of the cutting force signal pattern. The dynamic response of the tool is taken into account through a function that relates the response time to the input variables in the process. The force signal is obtained with a dynamometric platform based on piezoelectric sensors. The final section of the paper shows the experimental validation where machining tests with variable machining conditions were carried out. The results reveal high precision in the estimation of depths of cut in end milling.

References

1.
Liu
,
Y.
, and
Xu
,
X.
,
2017
, “
Industry 4.0 and Cloud Manufacturing: A Comparative Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
034701
.
2.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
, pp.
79
100
.
3.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Kumara
,
S.
, and
Gao
,
R. X.
,
2018
, “
Cloud-Based Parallel Machine Learning for Tool Wear Prediction
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041005
.
4.
Singh
,
K. K.
,
Karkit
,
V.
, and
Singh
,
R.
,
2017
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
.
5.
Giorgio Bort
,
C. M.
,
Leonesio
,
M.
, and
Bosetti
,
P.
,
2016
, “
A Model-Based Adaptive Controller for Chatter Mitigation and Productivity Enhancement in CNC Milling Machines
,”
Robot. Comput. Integr. Manuf.
,
40
, pp.
34
43
.
6.
Mansour
,
S. Z.
, and
Seethaler
,
R.
,
2017
, “
Feedrate Optimization for Computer Numerically Controlled Machine Tools Using Modeled and Measured Process Constraints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011012
.
7.
Zhao
,
Z. Y.
,
Wang
,
C. Y.
,
Zhou
,
H. M.
, and
Qin
,
Z.
,
2007
, “
Pocketing Toolpath Optimization for Sharp Corners
,”
J. Mater. Process. Technol.
,
192–193
, pp.
175
180
.
8.
Tajima
,
S.
, and
Sencer
,
B.
,
2016
, “
Kinematic Corner Smoothing for High Speed Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
27
43
.
9.
Huang
,
N.
,
Lynn
,
R.
, and
Kurfess
,
T.
,
2017
, “
Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051011
.
10.
Otkur
,
M.
, and
Lazoglu
,
I.
,
2007
, “
Trochoidal Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1324
1332
.
11.
Shixiong
,
W.
,
Wei
,
M.
,
Bin
,
L.
, and
Chengyong
,
W.
,
2016
, “
Trochoidal Machining for the High-Speed Milling of Pockets
,”
J. Mater. Process. Technol.
,
233
, pp.
29
43
.
12.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091006
.
13.
Altintas
,
Y.
, and
Yellowley
,
I.
,
1987
, “
The Identification of Radial Width and Axial Depth of Cut in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
27
(
3
), pp.
367
381
.
14.
Tarn
,
J. H.
, and
Tomizuka
,
M.
,
1989
, “
On-Line Monitoring of Tool and Cutting Conditions in Milling
,”
ASME J. Eng. Ind.
,
111
(
3
), pp. 206–212.
15.
Choi
,
J.-G.
, and
Yang
,
M.-Y.
,
1999
, “
In-Process Prediction of Cutting Depths in End Milling
,”
Int. J. Mach. Tools Manuf.
,
39
(
5
), pp.
705
721
.
16.
Hwang
,
J. H.
,
Oh
,
Y. T.
,
Kwon
,
W. T.
, and
Chu
,
C. N.
,
2003
, “
In-Process Estimation of Radial Immersion Ratio in Face Milling Using Cutting Force
,”
Int. J. Adv. Manuf. Technol.
,
22
(
3–4
), pp.
313
320
.
17.
Yang
,
L.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2005
, “
Analysis of Force Shape Characteristics and Detection of Depth-of-Cut Variations in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
454
462
.
18.
Tarng
,
Y. S.
, and
Shyur
,
Y. Y.
,
1993
, “
Identification of Radial Depth of Cut in Numerical Control Pocketing Routines
,”
Int. J. Mach. Tools Manuf.
,
33
(
1
), pp.
1
11
.
19.
Prickett
,
P. W.
,
Siddiqui
,
R. A.
, and
Grosvenor
,
R. I.
,
2011
, “
The Development of an End-Milling Process Depth of Cut Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
52
(
1–4
), pp.
89
100
.
20.
Gaja
,
H.
, and
Liou
,
F.
,
2016
, “
Automatic Detection of Depth of Cut During End Milling Operation Using Acoustic Emission Sensor
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
2913
2925
.
You do not currently have access to this content.