This paper describes a robust tool wear monitoring scheme for turning processes using low-cost sensors. A feature normalization scheme is proposed to eliminate the dependence of signal features on cutting conditions, cutting tools, and workpiece materials. In addition, a systematic feature selection procedure in conjunction with automated signal preprocessing parameter selection is presented to select the feature set that maximizes the performance of the predictive tool wear model. The tool wear model is built using a type-2 fuzzy basis function network (FBFN), which is capable of estimating the uncertainty bounds associated with tool wear measurement. Experimental results show that the tool wear model built with the selected features exhibits high accuracy, generalized applicability, and exemplary robustness: The model trained using 4140 steel turning test data could predict the tool wear for Inconel 718 turning with a root-mean-square error (RMSE) of 7.80 μm and requests tool changes with a 6% margin on average. Furthermore, the developed method was successfully applied to tool wear monitoring of Ti–6Al–4V alloy despite different mechanisms of tool wear, i.e., crater wear instead of flank wear.

Reference

1.
Teti
,
R.
,
Jemielniak
,
K.
,
O'Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machining Operations
,”
CIRP Ann.-Manuf. Technol.
,
59
(
2
), pp.
717
739
.
2.
Abellan-Nebot
,
J. V.
, and
Subirón
,
F. R.
,
2010
, “
A Review of Machining Monitoring Systems Based on Artificial Intelligence Process Models
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
237
257
.
3.
Sick
,
B.
,
2002
, “
On-Line and Indirect Tool Wear Monitoring in Turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal Process.
,
16
(
4
), pp.
487
546
.
4.
Grzesik
,
W.
,
2008
, “
Influence of Tool Wear on Surface Roughness in Hard Turning Using Differently Shaped Ceramic Tools
,”
Wear
,
265
(
3–4
), pp.
327
335
.
5.
Niaki
,
F. A.
, and
Mears
,
L.
,
2017
, “
A Comprehensive Study on the Effects of Tool Wear on Surface Roughness, Dimensional Integrity and Residual Stress in Turning IN718 Hard-to-Machine Alloy
,”
J. Manuf. Processes
,
30
, pp.
268
280
.
6.
Liu
,
T.-I.
, and
Jolley
,
B.
,
2015
, “
Tool Condition Monitoring (TCM) Using Neural Networks
,”
Int. J. Adv. Manuf. Technol.
,
78
(
9–12
), pp.
1999
2007
.
7.
Nouri
,
M.
,
Fussell
,
B. K.
,
Ziniti
,
B. L.
, and
Linder
,
E.
,
2015
, “
Real-Time Tool Wear Monitoring in Milling Using a Cutting Condition Independent Method
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
1
13
.
8.
Li
,
N.
,
Chen
,
Y.
,
Kong
,
D.
, and
Tan
,
S.
,
2017
, “
Force-Based Tool Condition Monitoring for Turning Process Using V-Support Vector Regression
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
351
361
.
9.
Scheffer
,
C.
, and
Heyns
,
P.
,
2001
, “
Wear Monitoring in Turning Operations Using Vibration and Strain Measurements
,”
Mech. Syst. Signal Process.
,
15
(
6
), pp.
1185
1202
.
10.
Dimla
,
D. E.
,
2002
, “
The Correlation of Vibration Signal Features to Cutting Tool Wear in a Metal Turning Operation
,”
Int. J. Adv. Manuf. Technol.
,
19
(
10
), pp.
705
713
.
11.
Alonso
,
F.
, and
Salgado
,
D.
,
2008
, “
Analysis of the Structure of Vibration Signals for Tool Wear Detection
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
735
748
.
12.
Prasad
,
B. S.
, and
Babu
,
M. P.
,
2017
, “
Correlation Between Vibration Amplitude and Tool Wear in Turning: Numerical and Experimental Analysis
,”
Eng. Sci. Technol., Int. J.
,
20
(
1
), pp.
197
211
.
13.
Li
,
X.
,
2002
, “
A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning
,”
Int. J. Mach. Tools Manuf.
,
42
(
2
), pp.
157
165
.
14.
Ren
,
Q.
,
Balazinski
,
M.
,
Baron
,
L.
,
Jemielniak
,
K.
,
Botez
,
R.
, and
Achiche
,
S.
,
2014
, “
Type-2 Fuzzy Tool Condition Monitoring System Based on Acoustic Emission in Micromilling
,”
Inf. Sci.
,
255
, pp.
121
134
.
15.
Maia
,
L. H. A.
,
Abrao
,
A. M.
,
Vasconcelos
,
W. L.
,
Sales
,
W. F.
, and
Machado
,
A. R.
,
2015
, “
A New Approach for Detection of Wear Mechanisms and Determination of Tool Life in Turning Using Acoustic Emission
,”
Tribol. Int.
,
92
, pp.
519
532
.
16.
Axinte
,
D.
, and
Gindy
,
N.
,
2004
, “
Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2679
2691
.
17.
Drouillet
,
C.
,
Karandikar
,
J.
,
Nath
,
C.
,
Journeaux
,
A.-C.
,
El Mansori
,
M.
, and
Kurfess
,
T.
,
2016
, “
Tool Life Predictions in Milling Using Spindle Power With the Neural Network Technique
,”
J. Manuf. Processes
,
22
, pp.
161
168
.
18.
Zhu
,
K.
,
San Wong
,
Y.
, and
Hong
,
G. S.
,
2009
, “
Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
537
553
.
19.
Niaki
,
F. A.
,
Feng
,
L.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2016
, “
A Wavelet-Based Data-Driven Modelling for Tool Wear Assessment of Difficult to Machine Materials
,”
Int. J. Mechatronics Manuf. Syst.
,
9
(
2
), pp.
97
121
.
20.
Subrahmanya
,
N.
, and
Shin
,
Y. C.
,
2008
, “
Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031014
.
21.
Segreto
,
T.
,
Simeone
,
A.
, and
Teti
,
R.
,
2013
, “
Multiple Sensor Monitoring in Nickel Alloy Turning for Tool Wear Assessment Via Sensor Fusion
,”
Procedia CIRP
,
12
, pp.
85
90
.
22.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
, pp.
1157
1182
.http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
23.
Liao
,
T. W.
,
2010
, “
Feature Extraction and Selection From Acoustic Emission Signals With an Application in Grinding Wheel Condition Monitoring
,”
Eng. Appl. Artif. Intell.
,
23
(
1
), pp.
74
84
.
24.
Shi
,
D.
, and
Gindy
,
N. N.
,
2007
, “
Tool Wear Predictive Model Based on Least Squares Support Vector Machines
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1799
1814
.
25.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
26.
Wang
,
G.
, and
Cui
,
Y.
,
2013
, “
On Line Tool Wear Monitoring Based on Auto Associative Neural Network
,”
J. Intell. Manuf.
,
24
(
6
), pp.
1085
1094
.
27.
D'Addona
,
D. M.
,
Ullah
,
A. S.
, and
Matarazzo
,
D.
,
2017
, “
Tool-Wear Prediction and Pattern-Recognition Using Artificial Neural Network and DNA-Based Computing
,”
J. Intell. Manuf.
,
28
(
6
), pp.
1285
1301
.
28.
Gajate
,
A.
,
Haber
,
R.
,
Del Toro
,
R.
,
Vega
,
P.
, and
Bustillo
,
A.
,
2012
, “
Tool Wear Monitoring Using Neuro-Fuzzy Techniques: A Comparative Study in a Turning Process
,”
J. Intell. Manuf.
,
23
(
3
), pp.
869
882
.
29.
Mehrabi
,
M. G.
, and
Kannatey-Asibu
Jr.
,
E.
,
2002
, “
Hidden Markov Model-Based Tool Wear Monitoring in Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
651
658
.
30.
Yu
,
J.
,
Liang
,
S.
,
Tang
,
D.
, and
Liu
,
H.
,
2017
, “
A Weighted Hidden Markov Model Approach for Continuous-State Tool Wear Monitoring and Tool Life Prediction
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
201
211
.
31.
Wang
,
G.
,
Qian
,
L.
, and
Guo
,
Z.
,
2013
, “
Continuous Tool Wear Prediction Based on Gaussian Mixture Regression Model
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1921
1929
.
32.
Penedo
,
F.
,
Haber
,
R. E.
,
Gajate
,
A.
, and
del Toro
,
R. M.
,
2012
, “
Hybrid Incremental Modeling Based on Least Squares and Fuzzy K-NN for Monitoring Tool Wear in Turning Processes
,”
IEEE Trans. Ind. Inf.
,
8
(
4
), pp.
811
818
.
33.
Chungchoo
,
C.
, and
Saini
,
D.
,
2002
, “
On-Line Tool Wear Estimation in CNC Turning Operations Using Fuzzy Neural Network Model
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
29
40
.
34.
Kalpakjian
,
S.
,
1991
,
Manufacturing Processes for Engineering Materials
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
35.
Ren
,
Q.
,
Balazinski
,
M.
, and
Baron
,
L.
,
2009
, “
Uncertainty Prediction for Tool Wear Condition Using Type-2 Tsk Fuzzy Approach
,”
IEEE
International Conference on Systems, Man and Cybernetics
,
San Antonio
,
TX
, Oct. 11–14, pp.
660
665
.
36.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating—Part 1: Milling Tool Life Model Using a Discrete Grid Method
,”
Precis. Eng.
,
38
(
1
), pp.
9
17
.
37.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating—Part 2: Turning Tool Life Using a Markov Chain Monte Carlo Approach
,”
Precis. Eng.
,
38
(
1
), pp.
18
27
.
38.
Wang
,
J.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2015
, “
Enhanced Particle Filter for Tool Wear Prediction
,”
J. Manuf. Syst.
,
36
, pp.
35
45
.
39.
Niaki
,
F. A.
,
Michel
,
M.
, and
Mears
,
L.
,
2016
, “
State of Health Monitoring in Machining: Extended Kalman Filter for Tool Wear Assessment in Turning of IN718 Hard-to-Machine Alloy
,”
J. Manuf. Processes
,
24
, pp.
361
369
.
40.
Zhang
,
J.
,
Starly
,
B.
,
Cai
,
Y.
,
Cohen
,
P. H.
, and
Lee
,
Y. S.
,
2017
, “
Particle Learning in Online Tool Wear Diagnosis and Prognosis
,”
J. Manuf. Processes
,
28
, pp.
457
463
.
41.
Ngo
,
P. D.
, and
Shin
,
Y. C.
,
2016
, “
Modeling of Unstructured Uncertainties and Robust Controlling of Nonlinear Dynamic Systems Based on Type-2 Fuzzy Basis Function Networks
,”
Eng. Appl. Artif. Intell.
,
53
, pp.
74
85
.
42.
Wang
,
L.-X.
, and
Mendel
,
J. M.
,
1992
, “
Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares Learning
,”
IEEE Trans. Neural Networks
,
3
(
5
), pp.
807
814
.
43.
Lee
,
C. W.
, and
Shin
,
Y. C.
,
2003
, “
Construction of Fuzzy Systems Using Least-Squares Method and Genetic Algorithm
,”
Fuzzy Sets Syst.
,
137
(
3
), pp.
297
323
.
44.
Anderson
,
M.
,
Patwa
,
R.
, and
Shin
,
Y. C.
,
2006
, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1879
1891
.
45.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti–6Al–4V) Via Lam and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.
You do not currently have access to this content.