In the previous work of authors, the authors have presented an automatic fault feature extraction method, called ensemble superwavelet transform (ESW), based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform. However, the nonstationary fault feature ratio which defined to guide the optimal wavelet basis selection does not take the interferences of high-frequency components into consideration. In addition, the original ESW utilizes one optimal subband to reconstruct the signal, which may result in the leakage of useful fault features. The present paper improves the ESW to address these problems. Specifically, the authors modify the definition of fault feature ratio by eliminating the high-frequency components when calculating total amplitudes of Hilbert envelope spectrum. Moreover, for the purpose of preserving more useful fault features and recovering the signal more accurately, a novel approach to reconstruct the processed result by incorporating two optimal subbands is proposed in this paper. The comprehensive comparisons by processing two simulation signals are provided to verify the effectiveness and utility of the improved ESW. Moreover, the improved ESW is applied to a range of engineering applications, and the obtained results demonstrate that the improved ESW can act as an effective technique in extracting weak fault features.

References

1.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Sig. Process.
,
23
(
3
), pp.
724
739
.
2.
Heng
,
S. Y. A.
,
Tan
,
A. C.
,
Mathew
,
J.
, and
Yang
,
B.-S.
,
2007
, “
Machine Prognosis With Full Utilization of Truncated Lifetime Data
,”
Second World Congress on Engineering Asset Management
, Harrogate, UK, June 11–14, pp.
775
784
.
3.
Yan
,
R.
,
Gao
,
R. X.
, and
Chen
,
X.
,
2014
, “
Wavelets for Fault Diagnosis of Rotary Machines: A Review With Applications
,”
Signal Process.
,
96
, pp.
1
15
.
4.
Randall
,
R. B.
, and
Antoni
,
J.
,
2011
, “
Rolling Element Bearing Diagnostics—A Tutorial
,”
Mech. Syst. Sig. Process.
,
25
(
2
), pp.
485
520
.
5.
Feng
,
Z.
, and
Zuo
,
M. J.
,
2012
, “
Vibration Signal Models for Fault Diagnosis of Planetary Gearboxes
,”
J. Sound Vib.
,
331
(
22
), pp.
4919
4936
.
6.
Dong
,
G.
,
Chen
,
J.
, and
Zhao
,
F.
,
2015
, “
A Frequency-Shifted Bispectrum for Rolling Element Bearing Diagnosis
,”
J. Sound Vib.
,
339
, pp.
396
418
.
7.
Wang
,
S.
,
Cai
,
G.
,
Zhu
,
Z.
,
Huang
,
W.
, and
Zhang
,
X.
,
2015
, “
Transient Signal Analysis Based on Levenberg–Marquardt Method for Fault Feature Extraction of Rotating Machines
,”
Mech. Syst. Sig. Process.
,
54–55
, pp.
16
40
.
8.
Feng
,
Z.
,
Liang
,
M.
, and
Chu
,
F.
,
2013
, “
Recent Advances in Time–Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Sig. Process.
,
38
(
1
), pp.
165
205
.
9.
He
,
W.
,
Ding
,
Y.
,
Zi
,
Y.
, and
Selesnick
,
I. W.
,
2016
, “
Sparsity-Based Algorithm for Detecting Faults in Rotating Machines
,”
Mech. Syst. Sig. Process.
,
72–73
, pp.
46
64
.
10.
Lin
,
J.
, and
Qu
,
L.
,
2000
, “
Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis
,”
J. Sound Vib.
,
234
(
1
), pp.
135
148
.
11.
Wang
,
S.
,
Huang
,
W.
, and
Zhu
,
Z.
,
2011
, “
Transient Modeling and Parameter Identification Based on Wavelet and Correlation Filtering for Rotating Machine Fault Diagnosis
,”
Mech. Syst. Sig. Process.
,
25
(
4
), pp.
1299
1320
.
12.
Chen
,
B.
,
Zhang
,
Z.
,
Sun
,
C.
,
Li
,
B.
,
Zi
,
Y.
, and
He
,
Z.
,
2012
, “
Fault Feature Extraction of Gearbox by Using Overcomplete Rational Dilation Discrete Wavelet Transform on Signals Measured From Vibration Sensors
,”
Mech. Syst. Sig. Process.
,
33
, pp.
275
298
.
13.
Jiang
,
H.
,
Chen
,
J.
,
Dong
,
G.
,
Liu
,
T.
, and
Chen
,
G.
,
2015
, “
Study on Hankel Matrix-Based SVD and Its Application in Rolling Element Bearing Fault Diagnosis
,”
Mech. Syst. Sig. Process.
,
52–53
, pp.
338
359
.
14.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Sig. Process.
,
35
(
1
), pp.
108
126
.
15.
Wang
,
Z.
,
Chen
,
J.
,
Dong
,
G.
, and
Zhou
,
Y.
,
2011
, “
Constrained Independent Component Analysis and Its Application to Machine Fault Diagnosis
,”
J. Sound Vib.
,
25
(
7
), pp.
2501
2512
.
16.
Cheng
,
W.
,
Zhang
,
Z.
,
Lee
,
S.
, and
He
,
Z.
,
2012
, “
Source Contribution Evaluation of Mechanical Vibration Signals Via Enhanced Independent Component Analysis
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021014
.
17.
Antoni
,
J.
, and
Randall
,
R.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Sig. Process.
,
20
(
2
), pp.
308
331
.
18.
Zhang
,
Y.
, and
Randall
,
R.
,
2009
, “
Rolling Element Bearing Fault Diagnosis Based on the Combination of Genetic Algorithms and Fast Kurtogram
,”
Mech. Syst. Sig. Process.
,
23
(
5
), pp.
1509
1517
.
19.
Hoseini
,
M. R.
,
Zuo
,
M. J.
, and
Wang
,
X.
,
2012
, “
Denoising Ultrasonic Pulse-Echo Signal Using Two-Dimensional Analytic Wavelet Thresholding
,”
Measurement
,
45
(
3
), pp.
255
267
.
20.
Zhang
,
C.
,
Li
,
B.
,
Chen
,
B.
,
Cao
,
H.
,
Zi
,
Y.
, and
He
,
Z.
,
2014
, “
Periodic Impulsive Fault Feature Extraction of Rotating Machinery Using Dual-Tree Rational Dilation Complex Wavelet Transform
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051011
.
21.
Daubechies
,
I.
,
1992
,
Ten Lectures on Wavelets
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
22.
Mallat
,
S.
,
2008
,
A Wavelet Tour of Signal Processing: The Sparse Way
,
Academic
,
Burlington, MA
.
23.
He
,
W.
,
Zi
,
Y.
,
Chen
,
B.
,
Wu
,
F.
, and
He
,
Z.
,
2015
, “
Automatic Fault Feature Extraction of Mechanical Anomaly on Induction Motor Bearing Using Ensemble Super-Wavelet Transform
,”
Mech. Syst. Sig. Process.
,
54–55
, pp.
457
480
.
24.
Selesnick
,
I. W.
,
2011
, “
Wavelet Transform With Tunable Q-Factor
,”
IEEE Trans. Sig. Process.
,
59
(
8
), pp.
3560
3575
.
25.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
(
1971
), pp.
903
995
.
26.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Sig. Process.
,
25
(
3
), pp.
735
802
.
27.
He
,
W.
,
Zi
,
Y.
,
Chen
,
B.
,
Wang
,
S.
, and
He
,
Z.
,
2013
, “
Tunable Q-Factor Wavelet Transform Denoising With Neighboring Coefficients and Its Application to Rotating Machinery Fault Diagnosis
,”
Sci. China Technol. Sci.
,
56
(
8
), pp.
1956
1965
.
28.
Feng
,
Z.
, and
Chu
,
F.
,
2007
, “
Application of Atomic Decomposition to Gear Damage Detection
,”
J. Sound Vib.
,
302
(
1
), pp.
138
151
.
29.
Cui
,
L.
,
Wang
,
J.
, and
Lee
,
S.
,
2014
, “
Matching Pursuit of an Adaptive Impulse Dictionary for Bearing Fault Diagnosis
,”
J. Sound Vib.
,
333
(
10
), pp.
2840
2862
.
30.
Selesnick
,
I. W.
,
2011
, “
Resonance-Based Signal Decomposition: A New Sparsity-Enabled Signal Analysis Method
,”
Signal Process.
,
91
(
12
), pp.
2793
2809
.
31.
Selesnick
,
I. W.
,
2011
, “
Sparse Signal Representations Using the Tunable Q-Factor Wavelet Transform
,”
Proc. SPIE
,
8138
, p.
81381U
.
32.
Renaudin
,
L.
,
Bonnardot
,
F.
,
Musy
,
O.
,
Doray
,
J.
, and
Remond
,
D.
,
2010
, “
Natural Roller Bearing Fault Detection by Angular Measurement of True Instantaneous Angular Speed
,”
Mech. Syst. Sig. Process.
,
24
(
7
), pp.
1998
2011
.
You do not currently have access to this content.