The objective of this work is to develop an improved temperature measurement system for friction stir welding (FSW). FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. The measurement of temperatures during FSW is needed for process monitoring, heat transfer model verification and process control, but current methods have limitations due to their restricted spatial and temporal resolution. Previous work showed that temperatures at the tool shoulder-workpiece interface can be measured and utilized for closed-loop control of temperature. Adding an additional thermocouple at the tool pin-workpiece interface and performing a calibration of the measurement to gain better insight into the temperature distribution in the weld zone improved the method. Both thermocouples were placed in through holes right at the interface of tool so that the sheaths are in direct contact with the workpiece material. This measurement strategy reveals dynamic temperature variations at the shoulder and the pin within a single rotation of the tool in real-time. It was found that the highest temperatures are at the shoulder interface between the advancing side and the trailing edge of the tool, closer to the advancing side. The temperature distribution was mostly affected by travel speed and the temperature difference within one tool rotation was found to be between 10 °C and 50 °C, depending on the process parameters. The dynamic temperature measurements obtained with the current system are of unmatched resolution, fast, and reliable and are likely to be of interest for both fundamental studies and process control of FSW.

References

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
,
1991
, “
Friction Stir Butt Welding
,” GB Patent No. 9125978.8.
2.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng.
,
R50
, pp.
1
78
.10.1016/j.mser.2005.07.001
3.
Threadgill
,
P. L.
,
Leonard
,
A. J.
,
Shercliff
,
H. R.
, and
Withers
,
P. J.
,
2009
, “
Friction Stir Welding of Aluminium Alloys
,”
Int. Mater. Rev.
,
54
(
2
), pp.
49
93
.10.1179/174328009X411136
4.
Fehrenbacher
,
A.
,
Cole
,
E. G.
,
Zinn
,
M. R.
,
Ferner
,
N. J.
,
Duffie
,
N. A.
, and
Pfefferkorn
,
F. E.
,
2011
, “
Towards Process Control of Friction Stir Welding for Different Aluminum Alloys
,”
Friction Stir Welding and Processing VI - Held During the TMS 2011 Annual Meeting and Exhibition
, Feb. 27–Mar. 3, Minerals, Metals and Materials Society, San Diego, CA, pp.
381
388
.
5.
Fehrenbacher
,
A.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2011
, “
Toward Automation of Friction Stir Welding Through Temperature Measurement and Closed-Loop Control
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051008
.10.1115/1.4005034
6.
Perivilli
,
S.
,
Peddieson
,
J.
, and
Cui
,
J.
,
2008
, “
Friction Stir Welding Heat Transfer: Quasisteady Modeling and Its Validation
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011007
.10.1115/1.3046138
7.
Smith
,
C. B.
,
Zinn
,
M. R.
,
Shultz
,
E. F.
,
Cole
,
E. G.
,
Ferrier
,
N. J.
, and
Pfefferkorn
,
F. E.
,
2010
, “
Effect of Compliance and Travel Angle on Friction Stir Welding With Gaps
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041010
.10.1115/1.4001581
8.
Dehelean
,
D.
,
Safta
,
V.
,
Cojocaru
,
R.
,
Hälker
,
T.
, and
Ciucă
,
C.
,
2008
, “
Monitoring the Quality of Friction Stir Welded Joints by Infrared Thermography
,”
Proceedings of the IIW 2008 International Conference on Safety and Reliability of Welded Components in Energy and Processing Industry
, Graz, Austria, July 10–11, 2008, paper WP4-2, pp.
621
626
.
9.
Darras
,
B. M.
,
Omar
,
M. A.
, and
Khraisheh
,
M. K.
,
2007
, “
Experimental Thermal Analysis of Friction Stir Processing
,”
Mater. Sci. Forum
,
539-543
, pp.
3801
3806
.10.4028/www.scientific.net/MSF.539-543.3801
10.
Burkes
,
D. E.
,
Hallinan
,
N. P.
,
Shropshire
,
K. L.
, and
Wells
,
P. B.
,
2008
, “
Effects of Applied Load on 6061-T6 Aluminum Joined Employing a Novel Friction Bonding Process
,”
Metall. Mater. Trans. A
,
39
(
12
), pp.
2852
2861
.10.1007/s11661-008-9644-9
11.
Zettler
,
R.
,
Potomati
,
F.
,
Dos Santos
,
J. F.
, and
De Alcantara
,
N. G.
,
2006
, “
Temperature Evolution and Mechanical Properties of Dissimilar Friction Stir Weldments When Joining AA2024 and AA7075 With an AA6056 Alloy
,” Welding World,
50
(11–12), pp.
107
116
.
12.
Swaminathan
,
S.
,
Oh-Ishi
,
K.
,
Zhilyaev
,
A. P.
,
Fuller
,
C. B.
,
London
,
B.
,
Mahoney
,
M. W.
, and
McNelley
,
T. R.
,
2010
, “
Peak Stir Zone Temperatures During Friction Stir Processing
,”
Metall. Mater. Trans. A
,
41
(
3
), pp.
631
640
.10.1007/s11661-009-0140-7
13.
Colegrove
,
P. A.
, and
Shercliff
,
H. R.
,
2003
, “
Experimental and Numerical Analysis of Aluminium Alloy 7075-T7351 Friction Stir Welds
,”
Sci. Technol. Weld. Joining
,
8
(
5
), pp.
360
368
.10.1179/136217103225005534
14.
Record
,
J. H.
,
Covington
,
J. L.
,
Nelson
,
T. W.
,
Sorensen
,
C. D.
, and
Webb
,
B. W.
,
2007
, “
A Look at the Statistical Identification of Critical Process Parameters in Friction Stir Welding
,”
Welding J.
,
86
(
4
), pp.
97
103
.
15.
Cederqvist
,
L.
,
Garpinger
,
O.
,
Hagglund
,
T.
, and
Robertsson
,
A.
,
2012
, “
Cascade Control of the Friction Stir Welding Process to Seal Canisters for Spent Nuclear Fuel
,”
Control Eng. Pract.
,
20
(
1
), pp.
35
48
.10.1016/j.conengprac.2011.08.009
16.
Shercliff
,
H. R.
, and
Colegrove
,
P. A.
,
2007
, “
Process Modeling
,”
Friction Stir Welding and Processing
,
R. S.
Mishra
and
M. W.
Mahoney
, eds.,
ASM International
,
Materials Park, OH
, pp.
187
217
.
17.
Fehrenbacher
,
A.
,
Pfefferkorn
,
F. E.
,
Zinn
,
M. R.
,
Ferrier
,
N. J.
, and
Duffie
,
N. A.
,
2008
, “
Closed-Loop Control of Temperature in Friction Stir Welding
,”
7th International Friction Stir Welding Symposium
, Awaji Island, Japan, TWI, Published on CD.
18.
McCune
,
R. W.
,
Murphy
,
A. A.
,
Price
,
M. M.
, and
Butterfield
,
J. J.
,
2012
, “
The Influence of Friction Stir Welding Process Idealization on Residual Stress and Distortion Predictions for Future Airframe Assembly Simulations
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031011
.10.1115/1.4006554
19.
Peel
,
M.
,
Steuwer
,
A.
,
Preuss
,
M.
, and
Withers
,
P. J.
,
2003
, “
Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083 Friction Stir Welds
,”
Acta Mater.
,
51
, pp.
4791
4801
.10.1016/S1359-6454(03)00319-7
20.
Gratecap
,
F.
,
Racineux
,
G.
, and
Marya
,
S.
,
2008
, “
A Simple Methodology to Define Conical Tool Geometry and Welding Parameters in Friction Stir Welding
,”
7th International Friction Stir Welding Symposium
, Awaji Island, Japan, TWI, Published on CD.
21.
Simar
,
A.
,
Brechet
,
Y.
,
de Meester
,
B.
,
Denquin
,
A.
, and
Pardoen
,
T.
,
2008
, “
Microstructure, Local, and Global Mechanical Properties of Friction Stir Welds in Aluminium Alloy 6005A-T6
,”
Mater. Sci. Eng., A
,
486
(
1–2
), pp.
85
95
.10.1016/j.msea.2007.08.041
22.
Cederqvist
,
L.
,
Garpinger
,
O.
,
Hagglund
,
T.
, and
Robertsson
,
A.
,
2012
, “
Cascade Control of the Friction Stir Welding Process to Seal Canisters for Spent Nuclear Fuel
,”
Control Eng. Pract.
,
20
(
1
), pp.
35
48
.10.1016/j.conengprac.2011.08.009
23.
Woo
,
W.
,
Feng
,
Z.
,
Wang
,
X. L.
,
Brown
,
D. W.
,
Clausen
,
B.
,
An
,
K.
,
Choo
,
H.
,
Hubbard
,
C. R.
, and
David
,
S. A.
,
2007
, “
In Situ Neutron Diffraction Measurements of Temperature and Stresses During Friction Stir Welding of 6061-T6 Aluminium Alloy
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
298
303
.10.1179/174329307X197548
24.
Cederqvist
,
L.
,
Johansson
,
R.
,
Robertsson
,
A.
, and
Bolmsjö
,
G.
,
2009
, “
Faster Temperature Response and Repeatable Power Input to Aid Automatic Control of Friction Stir Welded Copper Canisters
,”
Friction Stir Welding and Processing
, Vol.
5
,
R. S.
Mishra
,
M. W.
Mahoney
, and
T. J.
Lienert
, eds.,
TMS
,
Warrendale, PA
, pp.
39
43
.
25.
Werschmoeller
,
D.
,
Ehmann
,
K.
, and
Li
,
X.
,
2011
, “
Tool Embedded Thin Film Microsensors for Monitoring Thermal Phenomena at Tool-Workpiece Interface During Machining
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021007
.10.1115/1.4003616
26.
Gerlich
,
A.
,
Avramovic-Cingara
,
G.
,
North
,
T. H.
,
2006
, “
Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding
,”
Metall. Mater. Trans. A
,
37
(9), pp.
2773
2786
10.1007/BF02586110.
27.
Yang
,
Y. K.
,
Dong
,
H.
, and
Kou
,
S.
,
2008
, “
Liquation Tendency and Liquid-Film Formation in Friction Stir Spot Welding
,”
Weld. J.
(Miami, FL, U.S.),
87
(
8
), p.
202s
211s
.
28.
Frigaard
,
Ø.
,
Grong
,
Ø.
,
Bjørneklett
,
B.
, and
Midling
,
O. T.
,
1999
, “
Modelling of the Thermal and Microstructure Fields During Friction Stir Welding of Aluminium Alloys
,”
International Friction Stir Welding Symposium
, Thousand Oaks, CA, Vol.
1
, pp.
1
10
.
29.
Tang
,
W.
,
Guo
,
X.
,
McClure
,
J. C.
, and
Murr
,
L. E. N.
,
1998
, “
Heat Input and Temperature Distribution in Friction Stir Welding
,”
J. Mater. Process. Manuf. Sci.
,
7
(
2
), pp.
163
172
.10.1106/55TF-PF2G-JBH2-1Q2B
30.
Cho
,
J.-H.
,
Boyce
,
D. E.
, and
Dawson
,
P. R.
,
2005
, “
Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel
,”
Mater. Sci. Eng., A
,
398
(
1–2
), pp.
146
163
.10.1016/j.msea.2005.03.002
31.
Maeda
,
M.
,
Liu
,
H.
,
Fujii
,
H.
, and
Shibayanagi
,
T.
,
2005
, “
Temperature Field in the Vicinity of FSW-Tool During Friction Stir Welding of Aluminium Alloys
,”
Weld. World
,
49
(
3
), pp.
69
75
.10.1007/BF03266478
32.
Simar
,
A.
,
Pardoen
,
T.
, and
de Meester
,
B.
,
2007
, “
Effect of Rotational Material Flow on Temperature Distribution in Friction Stir Welds
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
324
33
.10.1179/174329307X197584
33.
Nandan
,
R.
,
Roy
,
G. G.
, and
Debroy
,
T.
,
2006
, “
Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding
,”
Metall. Mater. Trans. A
,
37A
(
4
), pp.
1247
59
.10.1007/s11661-006-1076-9
34.
Jacquin
,
D.
,
De Meester
,
B.
,
Simar
,
A.
,
Deloison
,
D.
,
Montheillet
,
F.
, and
Desrayaud
,
C.
,
2011
, “
A Simple Eulerian Thermomechanical Modeling of Friction Stir Welding
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
57
65
.10.1016/j.jmatprotec.2010.08.016
35.
Mills
,
K. C.
,
2002
, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
You do not currently have access to this content.