In this study, an innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength, and interlayer thickness has been studied. Additionally, a simple numerical model was developed to predict the evolution of interlayer during partial transient liquid phase diffusion bonding. Diffusion of Fe, Cr, Ni, and Zr has been investigated by scanning electron microscopy examinations and energy dispersive spectroscopy elemental analyses. Results showed that control of heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength values of all bonded specimens were found around 480–670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of bonded specimens as a result of transfer of atoms between the interlayer and the matrix during bonding. The evolution of interlayer film thickness indicates a good agreement between the calculation and experimental measurement. This technique provides a reliable method of bonding zirconium alloy to stainless steel.

References

1.
Hirabayashi
,
T.
,
Sato
,
T.
,
Sagawa
,
C.
,
Masaki
,
N. M.
,
Saeki
,
M.
, and
Adachi
,
T.
, 1990, “
Distributions of Radionuclides on and in Spent Nuclear Fuel Claddings of Pressurized Water Reactors
,”
J. Nucl. Mater.
,
174
, pp.
45
52
.
2.
Almarshad
,
A. I. A.
, and
Klein
,
A. C.
, 1991, “
A Model for Waterside Oxidation of Zircaloy Fuel Cladding in Pressurized Water Reactors
,”
J. Nucl. Mater.
,
183
, pp.
186
194
.
3.
Senevat
,
J.
, and
Mainy
P.
, 1991, “
Eddy Current Examination Technique During Manufacturing of Zircaloy-4 Fuel Cladding Tubes
,”
J. Nucl. Mater.
,
178
, pp.
315
320
.
4.
Owczarski
,
W. A.
, 1962, “
Eutectic Brazing of Zircaloy 2 to Type 304 Stainless Steel
,”
J. Weld.
,
41
, pp.
78
83
.
5.
Akhter
,
J. I.
,
Ahmad
,
M.
, and
Ali
,
G.
, 2008, “
Diffusion Bonding of Ti Coated Zircaloy-4 and 316-L Stainless Steel
,”
Mater. Charact.
,
60
(
3
), pp.
193
196
.
6.
Ghosh
,
M.
,
Bhanumurthy
,
K.
,
Kale
,
G. B.
,
Krishnan
,
J.
, and
Chatterjee
,
S.
, 2003, “
Diffusion Bonding of Titanium to 304 Stainless Steel
,”
J. Nucl. Mater.
,
322
, pp.
235
241
.
7.
Shaaban
,
H. I.
, and
Hammad
,
F. H.
, 1978, “
Investigation of Diffusion-Bonding Between Zircaloy-4 and 304 Stainless Steel
,”
J. Nucl. Mater.
,
71
, pp.
277
285
.
8.
Sweeney
,
W. E.
, Jr.
, and
Batt
,
A. P.
, 1964, “
Electron Probe and X-Ray Diffraction Measurements of Intermediate Phases in Zr Diffused With Cr, Fe, Ni, Cu and Mo
,”
J. Nucl. Mater.
,
13
(
1
), pp.
87
91
.
9.
Wayman
,
M. L.
,
Smith
,
R. R.
, and
Wright
,
M. G.
, 1986, “
The Diffusion Bonding of Zr-2.5 Pct Nb to Steel
,”
Metall. Trans. A
,
17A
, pp.
429
434
.
10.
Kale
,
G. B.
,
Bhanumurthy
,
K.
,
Ratnakala
,
K. C.
, and
Khera
,
S. K.
, 1986, “
Solid State Bonding of Zircaloy-2 With Stainless Steel
,”
J. Nucl. Mater.
,
138
, pp.
73
80
.
11.
Ahmad
,
M.
,
Akhter
,
J. I.
,
Zaman
,
Q.
,
Shaikh
,
M. A.
,
Akhtar
,
M.
,
Iqbal
,
M.
, and
Ahmed
,
E.
, 2003, “
Diffusion Bonding of Stainless Steel to Zircaloy-4 in the Presence of a Ta Intermediate Layer
,”
J. Nucl. Mater.
,
317
(
2–3
), pp.
212
216
.
12.
Akhter
,
J. I.
,
Ahmad
,
M.
,
Iqbal
,
M.
,
Akhtar
,
M.
, and
Shaikh
,
M. A.
, 2005, “
Formation of Dendritic Structure in the Diffusion Zone of the Bonded Zircaloy-4 and Stainless Steel 316 L in the Presence of Ti Interlayer
,”
J. Alloys Compd.
,
399
(
1–2
), pp.
96
100
.
13.
Bhanumurthy
,
K.
,
Krishnan
,
J.
,
Kale
,
G. B.
,
Fotedar
,
R. K.
,
Biswas
,
A. R.
, and
Arya
,
R. N.
, 1995, “
Tubular Transition Joint Between Zircaloy-2 and Stainless Steel
,”
J Mater. Process. Technol.
,
54
(
1–4
), pp.
322
325
.
14.
Kalin
,
V.
,
Fedotov
,
V.
,
Sevryukov
,
O.
,
Plyuschev
,
A.
,
Mazul
,
I.
,
Gervash
,
A.
, and
Giniatulin
,
R.
, 1999, “
Be-Cu Joints Based on Amorphous Alloy Brazing for Divertor and First Wall Application
,”
J. Nucl. Mater.
,
271–272
, pp.
410
414
.
15.
Mazar Atabaki
,
M.
, 2010, “
Microstructural Evolution in the Partial Transient Liquid Phase Diffusion Bonding of Zircaloy-4 to Stainless Steel 321 Using Active Titanium Filler Metal
,”
J. Nucl. Mat.
,
406
(
3
), pp.
330
344
.
16.
Mazar Atabaki
,
M.
, 2010, “
Recent Progress in Joining of Ceramic Powder Metallurgy Products to Metals
,”
Metalurgija-J. Metall.
,
16
(
4
), pp.
255
268
.
17.
Mazar Atabaki
,
M.
, and
Idris
,
J.
, 2011, “
Low-Temperature Partial Transient Liquid Phase Diffusion Bonding of Al/Mg2Si Metal Matrix Composite to AZ91D Using Al-Based Interlayer
,”
Mater. Des.
,
34
, pp.
832
841
.
18.
Nakao
,
Y.
,
Nishimoto
,
K.
,
Shinozoki
,
K.
, and
Kang
C.
, 1989, “
Theoretical Research on Transient Liquid Insert Metal Diffusion Bonding of Nickel Base Alloys
,”
Trans. Jpn. Weld. Soc.
,
20
(
1
), pp.
60
65
.
19.
Zhou
,
Y.
,
Gale
,
W. F.
, and
North
,
T. H.
, 1995, “
Modelling of Transient Liquid Phase Diffusion Bonding
,”
Int. J. Mater. Rev.
,
40
(
5
), pp.
181
196
.
20.
Ojo
,
O. A.
,
Richards
,
N. L.
, and
Chaturvedi
,
M. C.
, 2004, “
Isothermal Solidification During Transient Liquid Phase Bonding of Inconel 738 Superalloy
,”
Sci. Technol. Weld. Joining
,
9
, pp.
532
540
.
21.
Sinclair
,
C. W.
, 1999, “
Modeling Transient Liquid Phase Bonding in Multicomponent Systems
,”
J. Phase Equilib.
,
20
(
4
), pp.
361
369
.
22.
Sinclair
,
C. W.
,
Purdy
,
G. R.
, and
Morral
,
J. E.
, 2000, “
Transient Liquid-Phase Bonding in Two-Phase Ternary Systems
,”
Metall. Trans. A
,
31A
, pp.
1187
1192
.
23.
Tuah-Poku
,
I.
,
Dollar
,
M.
, and
Massalski
,
T. B.
, 1988, “
A Study of the Transient Liquid Phase Bonding Process Applied to a Ag/Cu/Ag Sandwich Joint
,”
Metall. Trans. A
,
19A
, pp.
675
686
.
24.
Ikeuchi
,
K.
,
Zhou
,
Y.
,
Kokawa
,
H.
, and
North
,
T. H.
, 1993, “
Liquid-Solid Interface Migration at Grain Boundary Regions During Transient Liquid Phase Brazing
,”
Metall. Trans. A
,
23
(
10
), pp.
2905
2915
.
25.
Zhang
,
D. Q.
,
Suen
,
J.
Zhang
,
T. J.
,
Song
,
Y. H.
,
Radic
,
Z.
,
Taylor
,
P.
,
Holst
,
M. J.
,
Bajaj
,
C.
,
Baker
,
N. A.
, and
McCammon
,
J. A.
, 2005, “
Tetrameric Mouse Acetylcholinesterase: Continuum Diffusion Rate Calculations by Solving the Steady-State Smoluchowski Equation Using Finite Element Methods
,”
Biophys. J.
,
88
, pp.
1659
1665
.
26.
Zuh
,
Y.
, and
North
,
Y.
, 1994, “
Numerical Model for the Effect of Grain Boundaries on the Total Amount Diffused
,”
Acta Metall.
,
42
(
3
), pp.
1025
1029
.
27.
MacDonald
,
W. D.
, and
Eagar
,
T. W.
, 1998, “
Isothermal Solidification Kinetics of Diffusion Brazing
,”
Metall. Mater. Trans., A Phys. Metall. Mater. Sci.
,
29A
(
1
), pp.
315
325
.
28.
Kokawa
,
H.
,
Lee
,
C. H.
, and
North
,
C. H.
, 1991, “
Effect of Grain Boundaries on Isothermal Solidification During Transient Liquid Phase Brazing
,”
Metall. Trans. A
,
22A
, pp.
1627
1631
.
29.
Saida
,
K.
,
Zhou
,
Y.
, and
North
,
T. H.
, 1993, “
The Influence of Base Metal Grain Size on Isothermal Solidification During Transient Liquid-Phase Brazing of Nickel
,”
J. Mater. Sci.
,
28
, pp.
6427
6432
.
You do not currently have access to this content.