Resistance spot welding (RSW) is a very complicated process involving electromagnetic, thermal, fluid flow, mechanical, and metallurgical variables. Since weld nugget area is closed and unobservable using experimental means, numerical methods are generally used to reveal the nugget formation mechanism. Traditional RSW models focus on the electrothermal behaviors in the nugget and do not have the ability to model mass transport caused by induced magnetic forces in the molten nugget. In this paper, a multiphysics model, which comprehensively considers the coupling of electric, magnetic, thermal, and flow fields during RSW, temperature-dependent physical properties, and phase transformation, is used to investigate the heat and mass transport laws in the weld nugget and to reveal the interaction of the heat and mass transports and their evolutions. Results showed that strong and complicated mass transport appears in the weld nugget and substantially changed the heat transport laws and, therefore, would be able to substantially affect the hardening, segregation, and residual stress of the weld. Compared with the traditional models which could not consider the mass transport, the multiphysics model proposed in this paper could simulate the RSW process with higher accuracy and more realities.

References

1.
Wang
,
F.
,
Hou
,
W. K.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
,
Schultz
,
W. W.
, and
Wang
,
P. C.
, 2003, “
Modelling and Analysis of Metal Transfer in Gas Metal Arc Welding
,”
J. Phys. D
,
36
(
9
), pp.
1143
1152
.
2.
Qiu
,
L.
,
Yang
,
C. L.
, and
Lin
,
S. B.
, 2009, “
Effect of Pulse Current on Microstructure and Mechanical Properties of Variable Polarity Arc Weld Bead of 2219-T6 Aluminium Alloy
,”
Mater. Sci. Technol.
,
25
(
6
), pp.
739
742
.
3.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
, 2008, “
Three-Dimensional Modeling of the Plasma Arc in Arc Welding
,”
J. Appl. Phys.
,
104
(
10
), p.
103301
.
4.
Zhang
,
H. Y.
, and
Senkara
,
J.
, 2005,
Resistance Welding: Fundamentals and Applications
,
CRC/Taylor & Francis
,
London
.
5.
Cunningham
,
A.
, and
Begeman
,
M. L.
, 1965, “
A Fundamental Study of Project Welding Using High Speed Photography Computer
,”
Weld. J. (London)
,
44
, pp.
381
-s–384-
s
.
6.
Alcini
,
W. V.
, 1990, “
Experimental Measurement of Liquid Nugget Heat Convection in Spot Welding
,”
Weld. Res. Suppl.
,
69
(
4
), pp.
177s
180s
.
7.
Archer
,
G. R.
, 1960, “
Calculation for Temperature Response in Spot Welds
,”
Weld. J. (London)
,
39
(
8
), pp.
327s
330s
.
8.
Nied
,
H. A.
, 1984, “
The Finite Element Modeling of the Resistance Spot Welding Process
,”
Weld J. (Miami, FL, U.S.)
,
63
(
4
), pp.
123s
132s
.
9.
Li
,
W.
, 2005, “
Modeling and On-Line Estimation of Electrode Wear in Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
127
, pp.
709
718
.
10.
Li
,
W.
,
Cerjanec
,
D.
, and
Grzadzinski
,
G. A.
, 2005, “
A Comparative Study of Single-Phase AC and Multiphase DC Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
127
, pp.
583
590
.
11.
Wei
,
P. S.
,
Wang
,
S. C.
, and
Lin
,
M. S.
, 1996, “
Transport Phenomena During Resistance Spot Welding
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
762
773
.
12.
Khan
,
J. A.
,
Xu
,
L. J.
,
Chao
,
Y. J.
, and
Broach
,
K.
, 2000, “
Numerical Simulation of Resistance Spot Weld Process
,”
Numer. Heat Transfer, Part A
,
37
, pp.
425
446
.
13.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Hu
,
S. J.
, and
Chen
,
G. L.
, 2007, “
Numerical Analysis of Magnetic Fluid Dynamics Behaviors During Resistance Spot Welding
,”
J. Appl. Phys.
,
101
(
5
), p.
053506
.
14.
Wang
,
Q.
, and
Li
,
G. D.
, 1998,
Basic Theory of Electromagnetic
,
Science
,
Beijing
.
15.
Jia
,
R. G.
, and
Xue
,
Q. Z.
, 2003,
Electromagnetics
,
Higher Education
,
Beijing
.
16.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
, 2007, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys
,
40
, p.
5753
.
17.
Voller
,
V. R.
, and
Prakash
,
C.
, 1987, “
Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
, pp.
1709
1719
.
18.
Ilegbusi
,
O. J.
, and
Mat
,
M. D.
, 1997, “
A Hybrid Model of the Mushy Region in Phase-Change Problems
,”
J. Mater. Process. Manuf. Sci.
,
5
, pp.
209
223
.
19.
Noshadi
,
V.
,
Schneider
,
W.
, and
Kuznetsov
,
A. V.
, 1998,
Proceedings of the Eighth International Conference on Modeling of Casting, Welding, and Advanced Solidification Processes VIII
,
San Diego, CA
, June 7–12, pp.
655
662
.
20.
Ilegbusi
,
O. J.
, and
Mat
,
M. D.
, 1998, “
Modeling Flowability of Mushy Zone With a Hybrid Model Utilizing Coherency Solid Fraction
,”
Mater. Sci. Eng., A
,
247
, pp.
135
141
.
21.
ANSYS, Inc., ANSYS Documentation 2001.
22.
Li
,
Y. B.
,
Lai
,
X. M.
, and
Chen
,
G. L.
, 2009, “
The Influence of Interfacial Thermal Contact Conductance on Resistance Spot Weld Nugget Formation
,”
International Conference on Manufacturing Science and Engineering (ICMSE 2009) [Adv. Mater. Res.
,
97–101
,
3239
3242
(2010)].
23.
Tsai
,
C. L.
,
Dai
,
W. L.
,
Dicknson
,
D. W.
, and
Papritan
,
J. C.
, 1991, “
Analysis and Development of a Real-Time Control Methodology in Resistance Spot Welding
,”
Weld. Res. Suppl.
,
70
(
12
), pp.
339s
351s
.
24.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Lai
,
X. M.
, and
Chen
,
G. L.
, 2009, “
Electromagnetic Phenomena in Resistance Spot Welding and Its Effects on Weld Nugget Formation
,”
PIERS (Progress in Electromagnetics Research Symposium) Proceedings
,
Moscow, Russia
, Aug. 18–21, pp.
744
748
.
You do not currently have access to this content.