A novel methodology of laser coating of mixture of bioceramic and titanium nanoparticles onto metal implants is developed in this work. Feasibility of this approach is demonstrated via both multiphysics simulation and experiments. Treating incident laser as an electromagnetic wave, an electromagnetic (EM) module is coupled with a heat transfer (HT) module. The EM-HT model analyzes the interaction between laser and nanoparticles and ends up with a temperature rise in the system. Hydroxyapatite (HAp) and titanium nanoparticles are coated on the Ti–6Al–4V substrate. Processing parameters such as laser power, beam radius, scan speed, and layer thickness are studied, and correlation between these parameters and the final temperature is presented. The effect of the HAp/Ti mixing ratio to the generated temperature is also examined. Experiments are carried out to verify the model. Good agreements have been found between the EM-HT model and experiments.

1.
Denis
,
D.
,
St-Vicent
,
M.
,
Imbeau
,
D.
,
Jette
,
C.
, and
Nastasia
,
I.
, 2008, “
Intervention Practices in Musculoskeletal Disorder Prevention: A Critical Literature Review
,”
Appl. Ergon
0003-6870,
39
, pp.
1
14
.
2.
Dorozhkin
,
S. V.
, 2007, “
Bioceramics Based on Calcium Orthophosphates
,”
Glass Ceram.
0361-7610,
64
, pp.
442
447
.
3.
Cheng
,
G. J.
,
Pirzada
,
D.
,
Cai
,
M.
,
Mohanty
,
P.
, and
Bandyopadhyay
,
A.
, 2005, “
Bioceramic Coating of Hydroxyapatite on Titanium Substrate With Nd-YAG Laser
,”
Mater. Sci. Eng., C
0928-4931,
25
, pp.
541
547
.
4.
Goodridge
,
R. D.
,
Dalgarno
,
K. W.
, and
Wood
,
D. J.
, 2006, “
Indirect Selective Laser Sintering of an Apatite-Mullite Glass-Ceramic for Potential Use in Bone Replacement Applications
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
, pp.
57
68
.
5.
Ryan
,
G.
,
Pandit
,
A.
, and
Apatsidis
,
D. P.
, 2006, “
Fabrication Methods of Porous Metals for Use in Orthopedic Applications
,”
Biomaterials
0142-9612,
27
, pp.
2651
2670
.
6.
Tsui
,
Y. C.
,
Doyle
,
C.
, and
Clyne
,
T. W.
, 1998, “
Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels
,”
Biomaterials
0142-9612,
19
, pp.
2015
2029
.
7.
Streicher
,
R. M.
,
Schmidt
,
M.
, and
Fiorito
,
S.
, 2007, “
Nanosurfaces and Nanostructures for Artificial Orthopedic Implants
,”
Nanomedicine
1743-5889,
2
, pp.
861
874
.
8.
Fischer
,
P.
,
Karapatis
,
N.
,
Ramano
,
V.
,
Glardon
,
R.
, and
Weber
,
H. P.
, 2002, “
A Model for the Interaction of Near-Infrared Laser Pulses With Metal in Selective Laser Sintering
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
74
, pp.
467
474
.
9.
Xiao
,
B.
, and
Zhang
,
Y.
, 2007, “
Laser Sintering of Metal Powders on Top of Sintered Layers Under Multiple-Line Laser Scanning
,”
J. Phys. D: Appl. Phys.
0022-3727,
40
, pp.
6725
6734
.
10.
Chen
,
T.
, and
Zhang
,
Y.
, 2007, “
Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
575
582
.
11.
Fischer
,
P.
,
Locher
,
M.
,
Romano
,
V.
,
Weber
,
H. P.
,
Kolossov
,
S.
, and
Glardon
,
R.
, 2004, “
Temperature Measurements During Selective Laser Sintering of Titanium Powder
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
1293
1296
.
12.
Zhu
,
W.
,
Liu
,
Q.
,
Li
,
H.
, and
Zheng
,
M.
, 2007, “
A Simulation Model for the Temperature Field in Bioceramic Coating Cladded by Wide-Band Laser
,”
Mater. Des.
0264-1275,
28
, pp.
2673
2677
.
13.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
, and
Kolossov
,
S.
, 2004, “
Pulsed Laser Sintering of Metallic Powders
,”
Thin Solid Films
0040-6090,
453–454
, pp.
139
144
.
14.
Wang
,
X.
, and
Kruth
,
J.
, 2000, “
Energy Absorption and Penetration in Selective Laser Sintering: A Ray Tracing Model
,”
Proceedings of the International Conference on Mathematical Modeling and Computer Simulation of Metal Technologies, MMT
, pp.
673
682
.
15.
Vartanyan
,
T. A.
,
Bosbach
,
J.
,
Hendrich
,
C.
,
Stietz
,
F.
, and
Traeger
,
F.
, 2002, “
Theoretical Foundations for Size- and Shape-Selective Laser-Based Manipulation of Supported Metal Nanoparticles
,”
Proc. SPIE
0277-786X,
4636
, pp.
31
37
.
16.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
17.
Hawes
,
E. A.
,
Hastings
,
J. T.
,
Crofcheck
,
C.
, and
Menguc
,
M. P.
, 2007, “
Spectrally Selective Heating of Nanosized Particles by Surface Plasmon Resonance
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
104
, pp.
199
207
.
18.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1992, “
Short-Pulse Laser Heating on Metals
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
719
726
.
19.
Schneider
,
P. J.
, 1955,
Conduction Heat Transfer
,
Addison-Wesley
,
Cambridge
.
20.
Bruzzone
,
S.
,
Malvaldi
,
M.
,
Arrighini
,
G. P.
, and
Guidotti
,
C.
, 2005, “
Electromagnetic Coupling in Near-Field Scattering by Small Homogeneous and Heterogeneous Nanoaggregates
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
23808
23815
.
21.
Johnson
,
P. B.
, and
Christy
,
R. W.
, 1974, “
Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd
,”
Phys. Rev. B
0556-2805,
9
, pp.
5056
5070
.
22.
Williams
,
J. C.
, and
Belov
,
A. F.
, 1982,
Titanium and Titanium Alloys: Scientific and Technological Aspects
,
Plenum
,
New York
.
23.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
New York
, p.
102
.
24.
Zhang
,
M. Y.
, and
Cheng
,
G. J.
, 2010, “
Nanoscale Size Dependence on Pulsed Laser Sintering of Hydroxyapatite/Titanium Particles on Metal Implants
,”
J. Appl. Phys.
0021-8979,
108
, p.
113112
.
25.
Zhang
,
M. Y.
,
Ye
,
C.
,
Erasquin
,
U. J.
,
Huynh
,
T.
,
Cai
,
C.
, and
Cheng
,
G. J.
, 2011, “
Laser Engineered Multilayer Coating of Biphasic Calcium Phosphate/Titanium Nanocomposite on Metal Substrates
,”
ACS Appl. Mater. Interfaces
,
3
(
2
), pp.
339
350
.
You do not currently have access to this content.