The thickness of recast layers produced during electrical discharge machining (EDM) is an important process performance measure as it may indicate an extent of crack propagation in a machined surface or thickness of a functional layer alloyed onto a machined surface. Thus, the availability of the recast layer thickness prediction models is needed to allow better control of machining outcomes, which becomes more vital for micro-EDM due to the microscale of machined features. The proposed numerical model, based on a multiple discharge approach for recast layer prediction, is developed to fill an existing gap in micro-EDM. The multiple discharge approach accounts for the overlapping nature by which craters are generated on the machined surface and considers the recast layer to be a combination of individual recast regions from individual craters. The numerical analysis, based on finite element methods, is used to determine the melting isotherms due to heat inputs on overlapping crater profiles. Then, a hemispherical-capped crater profile is estimated by applying a recast plasma flushing efficiency to the amount of molten material bounded by the melting isotherm. Finally, the recast region is defined to be bounded by the melting isotherm and crater profile. The model, developed for a peak discharge current of 1.45 A and pulse on time between 166 ns and 606 ns, predicted recast layer thicknesses of between 1.0μm and 1.82μm. It is then validated at pulse on time settings of 244 ns and 458 ns, which generated average recast layer thicknesses of 1.18μm and 1.56μm, respectively. Thus, the numerical model developed using the multiple discharge approach is suitable for estimation of recast layer thicknesses in micro-EDM.

1.
Bhattacharyya
,
B.
,
Gangopadhyay
,
S.
, and
Sarkar
,
B. R.
, 2007, “
Modelling and Analysis of EDMED Job Surface Integrity
,”
J. Mater. Process. Technol.
0924-0136,
189
(
1–3
), pp.
169
177
.
2.
Ekmekci
,
B.
, 2009, “
White Layer Composition, Heat Treatment, and Crack Formation in Electric Discharge Machining Process
,”
Metall. Mater. Trans. B
1073-5615,
40
(
1
), pp.
70
81
.
3.
Lee
,
H. T.
, and
Tai
,
T. Y.
, 2003, “
Relationship Between EDM Parameters and Surface Crack Formation
,”
J. Mater. Process. Technol.
0924-0136,
142
(
3
), pp.
676
683
.
4.
Soni
,
J. S.
, and
Chakraverti
,
G.
, 1996, “
Experimental Investigation on Migration of Material During EDM of Die Steel (T215 Cr12)
,”
J. Mater. Process. Technol.
0924-0136,
56
(
1–4
), pp.
439
451
.
5.
Gangadhar
,
A.
,
Shunmugam
,
M. S.
, and
Philip
,
P. K.
, 1991, “
Surface Modification in Electrodischarge Processing With a Powder Compact Tool Electrode
,”
Wear
0043-1648,
143
(
1
), pp.
45
55
.
6.
Shunmugam
,
M. S.
,
Philip
,
P. K.
, and
Gangadhar
,
A.
, 1994, “
Improvement of Wear Resistance by EDM With Tungsten Carbide P/M Electrode
,”
Wear
0043-1648,
171
(
1–2
), pp.
1
5
.
7.
Simao
,
J.
,
Lee
,
H. G.
,
Aspinwall
,
D. K.
,
Dewes
,
R. C.
, and
Aspinwall
,
E. M.
, 2003, “
Workpiece Surface Modification Using Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
2
), pp.
121
128
.
8.
Mohri
,
N.
,
Fukusima
,
Y.
,
Fukuzawa
,
Y.
,
Tani
,
T.
, and
Saito
,
N.
, 2003, “
Layer Generation Process on Work-Piece in Electrical Discharge Machining
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
157
160
.
9.
Lee
,
L. C.
,
Lim
,
L. C.
,
Narayanan
,
V.
, and
Venkatesh
,
V. C.
, 1988, “
Quantification of Surface Damage of Tool Steels After EDM
,”
Int. J. Mach. Tools Manuf.
0890-6955,
28
(
4
), pp.
359
372
.
10.
Rajurkar
,
K. P.
, and
Pandit
,
S. M.
, 1984, “
Quantitative Expressions for Some Aspects of Surface Integrity of Electro Discharge Machined Components
,”
J. Eng. Ind.
0022-0817,
106
(
2
), pp.
171
177
.
11.
Panda
,
D. K.
, and
Bhoi
,
R. K.
, 2006, “
Electro-Discharge Machining—A Qualitative Approach
,”
Mater. Manuf. Processes
1042-6914,
21
(
8
), pp.
853
862
.
12.
Murali
,
M. S.
, and
Yeo
,
S. H.
, 2005, “
Process Simulation and Residual Stress Estimation of Micro-Electrodischarge Machining Using Finite Element Method
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
44
(
7A
), pp.
5254
5263
.
13.
Lee
,
L. C.
,
Lim
,
L. C.
,
Wong
,
Y. S.
, and
Lu
,
H. H.
, 1990, “
Towards a Better Understanding of the Surface Features of Electro-Discharge Machined Tool Steels
,”
J. Mater. Process. Technol.
0924-0136,
24
, pp.
513
523
.
14.
Pandit
,
S. M.
, and
Rajurkar
,
K. P.
, 1983, “
Stochastic Approach to Thermal Modeling Applied to Electro-Discharge Machining
,”
ASME J. Heat Transfer
0022-1481,
105
(
3
), pp.
555
562
.
15.
Tan
,
P. C.
, and
Yeo
,
S. H.
, 2008, “
Modelling of Overlapping Craters in Micro-Electrical Discharge Machining
,”
J. Phys. D
0022-3727,
41
(
20
), p.
205302
.
16.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B. M.
, 2005, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann.
0007-8506,
54
(
2
), pp.
64
87
.
17.
Erden
,
A.
,
Arinc
,
F.
, and
Kogmen
,
M.
, 1995, “
Comparison of Mathematical Models for Electric Discharge Machining
,”
J. Mater. Process. Manuf. Sci.
1062-0656,
4
(
2
), pp.
163
176
.
18.
Patel
,
M. R.
,
Barrufet
,
M. A.
,
Eubank
,
P. T.
, and
Dibitonto
,
D. D.
, 1989, “
Theoretical Models of the Electrical Discharge Machining Process. II. The Anode Erosion Model
,”
J. Appl. Phys.
0021-8979,
66
(
9
), pp.
4104
4111
.
19.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
, 2007, “
Electro-Thermal Modelling of Anode and Cathode in Micro-EDM
,”
J. Phys. D
0022-3727,
40
(
8
), pp.
2513
2521
.
20.
Reddy
,
J. N.
, and
Gartling
,
D. K.
, 2001,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC
,
Boca Raton, FL
, pp.
46
50
.
21.
Xia
,
H.
,
Kunieda
,
M.
, and
Nishiwaki
,
N.
, 1996, “
Removal Amount Difference Between Anode and Cathode in EDM Process
,”
International Journal of Electrical Machining
,
1
(
1
), pp.
45
52
.
22.
Natsu
,
W.
,
Kunieda
,
M.
, and
Nishiwaki
,
N.
, 2004, “
Study on Influence of Inter-Electrode Atmosphere on Carbon Adhesion and Removal Amount
,”
International Journal of Electrical Machining
,
9
(
1
), pp.
43
50
.
23.
Arunachalam
,
C.
, 1995, “
Modeling the Electrical Discharge Machining Process
,” Ph.D. thesis, Texas A&M University, TX.
You do not currently have access to this content.