Transient liquid phase diffusion brazing is used in precision, hermetic joining applications as a replacement for diffusion bonding to reduce cycle times, reduce bonding pressure, and improve yields. In the present study, stainless steel 316L laminae are diffusion brazed with an interlayer of nickel nanoparticles and compared with samples joined by conventional diffusion bonding and electroplated nickel-phosphorous diffusion brazing. Comparison is made with regard to microstructural evolution, diffusional profile, and bond strength. All bonding was carried out in a uni-axial vacuum hot press at 1000°C with a heating rate of 10°C/min, a dwell time of 2 h and a bonding pressure of 10 MPa. Bond strength measurements show that the sample brazed with a nickel nanoparticle interlayer has the lowest void fraction at 4.8±0.9% and highest shear strength at 141.3±7.0MPa. Wavelength dispersive spectroscopic analysis of sample cross-sections shows substantial diffusion of Ni and Fe across the nickel nanoparticle bond line. Scanning electron micrographs show no secondary phases along the nickel nanoparticle bond line.

1.
Ghosh
,
M.
, and
Chatterjee
,
S.
, 2002, “
Characterization of Transition Joints of Commercially Pure Titanium to 304 Stainless Steel
,”
Mater. Charact.
1044-5803,
48
, pp.
393
399
.
2.
Paul
,
B. K.
, and
Peterson
,
R. B.
, 1999, “
Microlamination for Microtechnology-Based Energy, Chemical, and Biological Systems
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
39
, pp.
45
52
.
3.
Wattanutchariya
,
W.
, and
Paul
,
B. K.
, 2004, “
Bonding Fixture Tolerances for High-Volume Metal Microlamination Based on Fin Buckling and Laminae Misalignment Behavior
,”
Precis. Eng.
0141-6359,
28
, pp.
117
128
.
4.
Paul
,
B. K.
, and
Kanlayasiri
,
K.
, 2003, “
Aluminide Microchannel Arrays for High-Temperature Microreactors and Microscale Heat Exchangers
,”
ASPE 2003 Winter Topical Meeting: Machines and Processes for Micro-Scale and Meso-Scale Fabrication
, Gainesville, Florida, Vol.
28
, pp.
154
159
.
5.
Tuah-Poku
,
I.
,
Dollar
,
M.
, and
Massalski
,
T. B.
, 1988, “
A Study of the Transient Liquid Phase Bonding Process Applied to a Ag/Cu/Ag Sandwich Joint
,”
Metall. Mater. Trans. A
1073-5623,
19
(
3
), pp.
675
686
.
6.
Pouranvari
,
M.
,
Ekramia
,
A.
, and
Kokabi
,
A. H.
, 2008, “
Microstructure Development During Transient Liquid Phase Bonding of GTD-111 Nickel-Based Superalloy
,”
J. Alloys Compd.
0925-8388,
461
(
1–2
), pp.
641
647
.
7.
He
,
P.
,
Zhang
,
J.
,
Zhou
,
R.
, and
Li
,
X.
, 1999, “
Diffusion Bonding Technology of a Titanium Alloy to a Stainless Steel Web With a Ni Interlayer
,”
Mater. Charact.
1044-5803,
43
, pp.
287
292
.
8.
Orhan
,
N.
,
Khan
,
T. I.
, and
Eroglu
,
M.
, 2001, “
Diffusion Bonding of a Microduplex Stainless Steel to Ti-6Al-4V
,”
Scr. Mater.
1359-6462,
45
, pp.
441
446
.
9.
Carmai
,
J.
,
Baik
,
K. H.
,
Dunne
,
F. P. E.
,
Grant
,
P. S.
, and
Cantor
,
B.
, 2002, “
Interface Effects During Consolidation in Titanium Alloy Components Locally Reinforced With Matrix-Coated Fiber Composite
,”
Acta Mater.
1359-6454,
50
, pp.
4981
4993
.
10.
Naimon
,
E. R.
,
Doyle
,
J. H.
,
Rice
,
C. R.
,
Vigil
,
D.
, and
Walmsley
,
D. R.
, 1981, “
Diffusion Welding of Aluminum to Stainless Steel
,”
Weld J. (Miami, FL, U.S.)
0043-2296,
60
(
11
), pp.
17
20
.
11.
Bhanumurthy
,
K.
,
Derose
,
D. J.
,
Kale
,
G. B.
, and
Krishnan
,
J.
, 2004, “
Solid State Bonding of Porous Nickel Electrode to AISI 304 Austenitic Stainless Steel
,”
Mater. Sci. Technol.
0267-0836,
20
, pp.
1059
1063
.
12.
Burlet
,
H.
,
Martenez
,
M.
, and
Cailletaud
,
G.
, 2001, “
Microstructure and Residual Stresses Issued From the Bonding of an Austenitic Onto a Ferritic Steel by Solid Diffusion
,”
J. Phys. IV
1155-4339,
11
(
PR4
), pp.
Pr4
-157–Pr4-
164
.
13.
Kokawa
,
H.
,
Lee
,
C. H.
, and
North
,
T. H.
, 1991, “
Effect of Grain Boundaries on Isothermal Solidification During Transient Liquid Phase Brazing
,”
Metall. Trans. A
0360-2133,
22A
, pp.
1627
1631
.
14.
Ghosh
,
M.
,
Bhanumurthy
,
K.
,
Kale
,
G. B.
,
Krishnan
,
J.
, and
Chatterjee
,
S.
, 2003, “
Diffusion Bonding of Titanium to 304 3tainless Steel
,”
J. Nucl. Mater.
0022-3115,
322
, pp.
235
241
.
15.
Kundu
,
S.
, and
Chatterjee
,
S.
, 2006, “
Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Titanium–Stainless Steel Joints Using a Nickel Interlayer
,”
Mater. Sci. Eng., A
0921-5093,
425
, pp.
107
113
.
16.
Sumitomo Special Metal Company Ltd.
, 2000, “
Brazing Filler Alloy for Stainless Steel, Brazed Structure Manufactured by Using the Brazing Filler Alloy, and Brazing Filler Material for Stainless Steel
,” European Patent Appl. No. PCT/JP99/05155.
17.
McGurty
,
J. A.
, and
Funston
,
E. S.
, 1959, “
Nickel-Chromium-Germanium Alloys for Stainless Steel Brazing
,” U.S. Patent No. 2,901,347.
18.
Ryan
,
E. J.
, 1988, “
Titanium-Copper-Nickel Braze Filler Metal and Method of Brazing
,” U.S. Patent No. 4,725,509.
19.
Mohankumar
,
K.
,
Kripesh
,
V.
,
Shen
,
L.
, and
Tay
,
A. A. O.
, 2004, “
Study on the Microstructure and Mechanical Properties of a Novel SWCNT-Reinforced Solder Alloy for Ultra-Fine Pitch Applications
,”
Thin Solid Films
0040-6090,
504
, pp.
371
378
.
20.
Philip
,
V.
, 2004, “
High Strength Diffusion Brazing Utilizing Nano-Powders
,” U.S. Patent No. US 2004/0050913 A1.
21.
Castro
,
T.
,
Reifenberger
,
R.
,
Choi
,
E.
, and
Andres
,
R. P.
, 1990, “
Size-Dependent Melting Temperature of Individual Nanometer-Sized Clusters
,”
Phys. Rev. B
0163-1829,
42
(
13
), pp.
8548
8556
.
22.
Nanda
,
K. K.
, 2009, “
Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model
,”
Pramana
0304-4289,
72
(
4
), pp.
617
628
.
23.
Jiang
,
Q.
,
Zhang
,
S.
, and
Zhao
,
M.
, 2003, “
Size-Dependent Melting Point of Noble Metals
,”
Mater. Chem. Phys.
0254-0584,
82
, pp.
225
227
.
24.
Shandiz
,
M. A.
,
Safaei
,
A.
,
Sanjabi
,
S.
, and
Barber
,
Z. H.
, 2007, “
Modeling Size Dependence of Melting Temperature of Metallic Nanoparticles
,”
J. Phys. Chem. Solids
0022-3697,
68
, pp.
1396
1399
.
25.
Lai
,
S. L.
,
Guo
,
J. Y.
,
Petrova
,
V.
,
Ramanath
,
G.
, and
Allen
,
L. H.
, 1996, “
Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements
,”
Phys. Rev. Lett.
0031-9007,
77
, pp.
99
102
.
26.
Tiwari
,
S. K.
, and
Paul
,
B. K.
, 2008, “
Application of Nickel Nanoparticles in Diffusion Bonding of Stainless Steel Surfaces
,”
Proceedings of the Third JSME/ASME International Conference on Materials and Processing
,
Evanston, IL
, Oct. 7–10.
27.
Zuruzi
,
A. S.
,
Li
,
H.
, and
Dong
,
G.
, 1999, “
Effects of Surface Roughness on the Diffusion Bonding of Al Alloy 6061 in Air
,”
Mater. Sci. Eng., A
0921-5093,
270
(
2
), pp.
244
248
.
28.
Peters
,
K. F.
,
Chung
,
Y. -W.
, and
Cohen
,
J. B.
, 1997, “
Surface Melting on Small Particles
,”
Appl. Phys. Lett.
0003-6951,
71
(
16
), pp.
2391
2393
.
29.
Raghavan
,
V.
, 2004,
Physical Metallurgy: Principles and Practice
,
Prentice-Hall of India
,
India
.
30.
Dieter
,
G. E.
, 1988,
Mechanical Metallurgy
,
McGraw-Hill
,
UK
, pp.
251
256
.
31.
McMahon
,
C. J.
, 2004, “
Brittle Fracture of Grain Boundaries
,”
Interface Sci.
0927-7056,
12
, pp.
141
146
.
You do not currently have access to this content.