Online condition monitoring and diagnosis systems play an important role in the modern manufacturing industry. This paper presents a novel method to diagnose the degradation processes of multiple failure modes using a modified hidden Markov model (MHMM) with variable state space. The proposed MHMM is combined with statistical process control to quickly detect the occurrence of an unknown fault. This method allows the state space of a hidden Markov model to be adjusted and updated with the identification of new states. Hence, the online degradation assessment and adaptive fault diagnosis can be simultaneously obtained. Experimental results in a turning process illustrate that the tool wear state can be successfully detected, and previously unknown tool wear processes can be identified at the early stages using the MHMM.

1.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
, 2006, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
7
), pp.
1483
1510
.
2.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C. C.
, and
Mathew
,
J.
, 2009, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
0888-3270,
23
(
3
), pp.
724
739
.
3.
Wang
,
W.
, and
Christer
,
A. H.
, 2000, “
Towards a General Condition Based Maintenance Model for a Stochastic Dynamic System
,”
J. Oper. Res. Soc.
0160-5682,
51
(
2
), pp.
145
155
.
4.
Wang
,
G.
,
Luo
,
Z.
,
Qin
,
X.
,
Leng
,
Y.
, and
Wang
,
T.
, 2008, “
Fault Identification and Classification of Rolling Element Bearing Based on Time-Varying Autoregressive Spectrum
,”
Mech. Syst. Signal Process.
0888-3270,
22
(
4
), pp.
934
947
.
5.
Randall
,
R. B.
,
Antoni
,
J.
, and
Chobsaard
,
S.
, 2001, “
The Relationship Between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
5
), pp.
945
962
.
6.
Bonato
,
P.
,
Ceravolo
,
R.
,
De Stefano
,
A.
, and
Knaflitz
,
M.
, 1997, “
Bilinear Time-Frequency Transformations in the Analysis of Damaged Structures
,”
Mech. Syst. Signal Process.
0888-3270,
11
(
4
), pp.
509
527
.
7.
Paya
,
B. A.
,
Esat
,
I. I.
, and
Badi
,
M. N. M.
, 1997, “
Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor
,”
Mech. Syst. Signal Process.
0888-3270,
11
(
5
), pp.
751
765
.
8.
Jin
,
J.
, and
Shi
,
J.
, 2000, “
Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
2
), pp.
360
369
.
9.
Rabiner
,
L. R.
, 1989, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
0018-9219,
77
(
2
), pp.
257
286
.
10.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
, 2001, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
9
), pp.
1363
1384
.
11.
Wang
,
L.
,
Mehrabi
,
M. G.
, and
Kannatey-Asibu
,
J. E.
, 2002, “
Hidden Markov Model-Based Tool Wear Monitoring in Turning
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
3
), pp.
651
658
.
12.
Li
,
Z.
,
Wu
,
Z.
,
He
,
Y.
, and
Fulei
,
C.
, 2005, “
Hidden Markov Model-Based Fault Diagnostics Method in Speed-Up and Speed-Down Process for Rotating Machinery
,”
Mech. Syst. Signal Process.
0888-3270,
19
(
2
), pp.
329
339
.
13.
Smyth
,
P.
, 1994, “
Markov Monitoring With Unknown States
,”
Selected Areas in Communications, IEEE Journal on
,
12
(
9
), pp.
1600
1612
.
14.
Smyth
,
P.
, 1994, “
Hidden Markov Models for Fault Detection in Dynamic Systems
,”
Pattern Recognit.
,
27
(
1
), pp.
149
164
.
15.
Tang
,
K.
,
Williams
,
W. W.
,
Jwo
,
W.
, and
Gong
,
L. G.
, 1999, “
Performance Comparison Between On-Line Sensors and Control Charts in Manufacturing Process Monitoring
,”
IIE Trans.
0740-817X,
31
(
12
), pp.
1181
1190
.
16.
Ross
,
S. M.
, 1996,
Stochastic Processes, Probability and Statistics
,
Wiley
,
New York
.
17.
Viterbi
,
A.
, 1967, “
Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm
,”
IEEE Trans. Inf. Theory
0018-9448,
13
(
2
), pp.
260
269
.
18.
Forney
,
G. D.
, 1973, “
The Viterbi Algorithm
,”
Proc. IEEE
0018-9219,
61
(
3
), pp.
268
278
.
19.
Baum
,
L. E.
, and
Petrie
,
T.
, 1966, “
Statistical Inference for Probabilistic Functions of Finite State Markov Chains
,”
Ann. Math. Stat.
0003-4851,
37
(
6
), pp.
1554
1563
.
20.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
, 1977, “
Maximum Likelihood From Incomplete Data via the EM Algorithm
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
39
(
1
), pp.
1
38
.
21.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
, 2001,
Pattern Classification
,
Wiley
,
New York
.
22.
Montgomery
,
D. C.
, 2004,
Introduction to Statistical Quality Control
,
Wiley
,
New York
.
23.
Lowry
,
C. A.
, and
Montgomery
,
D. C.
, 1995, “
A Review of Multivariate Control Charts
,”
IIE Trans.
0740-817X,
27
(
6
), pp.
800
810
.
24.
Jackson
,
J. E.
, 1985, “
Multivariate Quality Control
,”
Commun. Stat: Theory Meth.
0361-0926,
14
(
11
), pp.
2657
2688
.
25.
Bishop
,
C. M.
, 2006,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
26.
Ryan
,
T. P.
, 2000,
Statistical Methods for Quality Improvement
,
Wiley
,
New York
.
27.
Nelson
,
L. S.
, 1984, “
The Shewhart Control Chart—Test for Special Cause
,”
J. Quality Technol.
0022-4065,
16
(
4
), pp.
237
239
.
28.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
, 1996, “
Artificial Neural Networks: A Tutorial
,”
IEEE Computer
,
29
(
3
), pp.
31
44
.
29.
Jain
,
A. K.
,
Murty
,
M. N.
, and
Flynn
,
P. J.
, 1999, “
Data Clustering: A Review
,”
ACM Comput. Surv.
0360-0300,
31
(
3
), pp.
264
323
.
You do not currently have access to this content.