Micromilling can be difficult to apply to many engineering materials due to a variety of scaling induced factors including low cutting speeds, high relative tool deflections and runout, and increased material strength at smaller size scales. To alleviate these problems, laser-assisted micromilling (LAMM) was evaluated on Ti6Al4V, AISI 422, and AISI 316 using 100μm diameter endmills in slotting operations. A three-dimensional transient finite-volume based thermal model was used to analytically predict appropriate process parameters on the basis of material removal temperatures. A two-dimensional finite element model was created and used to show the effects of cutting edge radius, uncut chip thickness, and material removal temperature on the cutting force. A thorough experimental investigation of acoustic emissions (AEs) during LAMM was performed. In particular, the effects of depth of cut, tool wear, and material removal temperature on the root-mean-square of AEs were studied. The effects of LAMM on the machined surface finish and edge burrs were also evaluated.

1.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2005, “
Micro-Burr Formation and Minimization Through Process Control
,”
Precis. Eng.
0141-6359,
29
, pp.
246
252
.
2.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
, 2004, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
666
678
.
3.
Lai
,
X. M.
,
Li
,
H. T.
,
Li
,
C. F.
,
Feng
,
J.
, and
Ni
,
J.
, 2007, “
Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling
,”
J. Micromech. Microeng.
0960-1317,
18
, pp.
1
12
.
4.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
474
481
.
5.
Dornfeld
,
D. A.
,
Min
,
S.
, and
Takeuchi
,
Y.
, 2006, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.
0007-8506,
55
, pp.
745
768
.
6.
Miao
,
J. C.
,
Chen
,
G. L.
,
Lai
,
X. M.
,
Li
,
H. T.
, and
Li
,
C. F.
, 2007, “
Review of Dynamic Issues in Micro-End-Milling
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
31
, pp.
897
904
.
7.
Min
,
S.
,
Lee
,
D. E.
,
de Grave
,
A.
,
Valente
,
C. M. O.
,
Lin
,
J.
, and
Dornfeld
,
D. A.
, 2006, “
Surface and Edge Quality Variation in Precision Machining of Single Crystal and Polycrystalline Materials
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
, pp.
479
487
.
8.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
, 2006, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
313
332
.
9.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2004, “
A Study of Surface Roughness in the Micro-End-Milling Process
,” Laboratory for Manufacturing and Sustainability, Consortium on Deburring and Edge Finishing, http://repositories.cdlib.org/lma/codef/kiha_03http://repositories.cdlib.org/lma/codef/kiha_03
10.
Shaw
,
M. C.
, 1950, “
A Quantized Theory of Strain Hardening as Applied to the Cutting of Metals
,”
J. Appl. Phys.
0021-8979,
21
, pp.
599
606
.
11.
Backer
,
W. R.
,
Marshall
,
E. R.
, and
Shaw
,
M. C.
, 1952, “
The Size Effect in Metal Cutting
,”
Trans. ASME
0097-6822,
74
, pp.
61
72
.
12.
Liu
,
K.
, and
Melkote
,
S. N.
, 2006, “
Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
730
738
.
13.
Lai
,
X. M.
,
Li
,
H. T.
,
Li
,
C. F.
,
Lin
,
Z.
, and
Ni
,
J.
, 2008, “
Modeling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
, pp.
1
14
.
14.
Anderson
,
M. C.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of an Austenitic Stainless Steel: P550
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
(
12
), pp.
2055
2067
.
15.
Tian
,
Y.
,
Wu
,
B. X.
, and
Shin
,
Y. C.
, 2008, “
Laser-Assisted Milling of Silicon Nitride and Inconel 718
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031013
.
16.
Skvarenina
,
S.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of Compacted Graphite Iron
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
7
17
.
17.
Anderson
,
M. C.
,
Patwa
,
R.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1879
1891
.
18.
Singh
,
R.
, and
Melkote
,
S. N.
, 2007, “
Characterization of a Hybrid Laser-Assisted Mechanical Micromachining (LAMM) Process for a Difficult-to-Machine Material
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1139
1150
.
19.
Jeon
,
Y.
, and
Pfefferkorn
,
F. E.
, 2008, “
Effect of Laser Preheating the Workpiece on Micro-End Milling of Metals
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
011004
.
20.
Nakao
,
Y.
, and
Dornfeld
,
D. A.
, 2003, “
Diamond Turning Using Position and AE Dual Feedback Control System
,”
Precis. Eng.
0141-6359,
27
, pp.
117
124
.
21.
Lee
,
D. E.
,
Hwang
,
I.
,
Valente
,
C. M. O.
,
Oliveria
,
J. F. G.
, and
Dornfeld
,
D. A.
, 2006, “
Precision Manufacturing Process Monitoring With Acoustic Emission
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
176
188
.
22.
Tansel
,
I.
,
Trujillo
,
M.
,
Nedbouyan
,
A.
,
Valez
,
C.
,
Bao
,
W. Y.
,
Arkan
,
T. T.
, and
Tansel
,
B.
, 1998, “
Micro-Endmilling-III. Wear Estimation and Tool Breakage Detection Using Acoustic Emission Signals
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
1449
1466
.
23.
Liang
,
S.
, and
Dornfeld
,
D.
, 1989, “
Tool Wear Detection Using Time Series Analysis of Acoustic Emission
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
199
205
.
24.
Li
,
X.
, 2002, “
A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
157
165
.
25.
Liu
,
J.
, and
Dornfeld
,
D. A.
, 1996, “
Modeling and Analysis of Acoustic Emission in Diamond Turning
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
199
207
.
26.
Marinescu
,
I.
, and
Axinte
,
D. A.
, 2008, “
A Critical Analysis of Effectiveness of Acoustic Emission Signals to Detect Tool and Workpiece Malfunctions in Milling Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
, pp.
1148
1160
.
27.
Bourne
,
K. A.
,
Jun
,
M.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2008, “
An Acoustic Emission-Based Method for Determining Contact Between a Tool and Workpiece at the Microscale
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031101
.
28.
CINDAS
, 1991,
Aerospace Structural Metals Handbook
,
CINDAS, Purdue University
,
West Lafayette, IN
.
29.
Shelton
,
J. A.
, and
Shin
,
Y. C.
, 2008, “
Experimental Evaluation of Laser-Assisted Micro-Milling of Two Difficult to Machine Alloys
,” ASME Paper No. MSEC_ICMP2008-72246.
30.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M. A.
, 2002, “
From the Basics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1373
1383
.
31.
Dabboussi
,
W.
, and
Nemes
,
J. A.
, 2005, “
Modeling of Ductile Fracture Using the Dynamic Punch Test
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
1282
1299
.
You do not currently have access to this content.