Microfiltration is an in-process recycling method that shows great potential to extend fluid life and reduce bacterial concentrations in synthetic and semisynthetic metalworking fluids. The primary problem facing the use of microfiltration is membrane fouling, which is the blocking of membrane pores causing reduced flux. In this paper a fluid dynamic model of partial and complete blocking in sintered alumina membranes is developed that includes hydrodynamic, electrostatic, and Brownian forces. Model simulations are employed to study the impact of electrostatic and Brownian motion forces on the progression of partial blocking. The simulations also examine the effects of fluid velocity, particle size, and particle surface potential. The inclusion of electrostatic and Brownian forces is shown to significantly impact the progression of the partial blocking mechanism. The addition of a strong interparticle electrostatic force is shown to eliminate the partial blocking build-up of small particles due to the presence of the repulsive forces between the particles. As a result, the time to complete blocking of the test pore was lengthened, suggesting that flux decline is reduced in the presence of electrostatic forces. The Brownian motion is shown to have a large impact at low fluid velocities. The most effective parameter set is a low fluid velocity, small particle sizes, high microemulsion surface potential, and high membrane surface potential.

1.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
739
745
.
2.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
746
752
.
3.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2001, “
Microfiltration of Polyoxyalkylene Metalworking Fluid Lubricant Additives Using Aluminum Oxide Membranes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
4
), pp.
692
699
.
4.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2005, “
Experimental Investigation of Membrane Fouling Due to Microfiltration of Semi-Synthetic Metalworking Fluids
,”
Trans. NAMRI/SME
1047-3025,
33
, pp.
281
288
.
5.
Rajagopalan
,
N.
,
Rusk
,
T.
, and
Dianovsky
,
M.
, 2004, “
Purification of Semi-Synthetic Metalworking Fluids by Microfiltration
,”
Tribology & Lubrication Technology Magazine
,
60
, pp.
38
44
.
6.
Zhao
,
F.
,
Urbance
,
M.
, and
Skerlos
,
S.
, 2004, “
Mechanistic Model of Coaxial Microfiltration for Semi-Synthetic Metalworking Fluid Microemulsions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
435
444
.
7.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2008, “
Partial Pore Blocking in Microfiltration Recycling of a Semi-Synthetic Metalworking Fluid
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
4
), p.
041014
.
8.
Bowen
,
W. R.
, and
Sharif
,
A. O.
, 1994, “
Transport Through Microfiltration Membranes—Particle Hydrodynamics and Flux Reduction
,”
J. Colloid Interface Sci.
0021-9797,
168
, pp.
414
421
.
9.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2008, “
Dynamic Simulations of Alumina Membrane Fouling From Recycling of Semi-Synthetic Metalworking Fluids
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
6
), p.
061015
.
10.
Kim
,
M.
, and
Zydney
,
A. L.
, 2004, “
Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration
,”
J. Colloid Interface Sci.
0021-9797,
269
, pp.
425
431
.
11.
Kim
,
M.
, and
Zydney
,
A. L.
, 2005, “
Particle-Particle Interactions During Normal Flow Filtration: Model Simulations
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
4073
4082
.
12.
Elimelech
,
M.
,
Gregory
,
J.
,
Jia
,
X.
, and
Williams
,
R. A.
, 1995,
Particle Depostition and Aggregation: Measurement, Modeling, and Simulation
,
Butterworth-Heinemann
,
Woburn, MA
.
13.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2007, “
Development of a Novel Metalworking Fluid Engineered for Use With Microfiltration Recycling
,”
ASME J. Tribol.
0742-4787,
129
(
1
), pp.
135
142
.
14.
Ohshima
,
H.
, 2006,
Theory of Colloid and Interfacial Electric Phenomena
,
Elsevier
.
15.
Carnie
,
S. L.
,
Chan
,
D. Y. C.
, and
Gunning
,
J. S.
, 1994, “
Electrical Double Layer Interaction Between Dissimilar Spherical Colloidal Particles and Between a Sphere and a Plate: The Linearized Poisson–Boltzmann Theory
,”
Langmuir
0743-7463,
10
, pp.
2993
3009
.
16.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
, 1991, “
Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer
,”
J. Colloid Interface Sci.
0021-9797,
143
(
1
), pp.
266
277
.
17.
Bhattacharjee
,
S.
, and
Elimelech
,
M.
, 1997, “
Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction Between a Particle and a Flat Plate
,”
J. Colloid Interface Sci.
0021-9797,
193
, pp.
273
285
.
You do not currently have access to this content.