Hard milling has a potential to replace finish grinding in manufacturing dies and molds. Surface finish is one key surface integrity parameter to justify the use of hard milling. In this study, a Taguchi design-of-experiment based finish milling hardened AISI H13 tool steel (50±1HRc) with physical vapor deposition (PVD) (Ti, Al) N–TiN-coated end mill was conducted to investigate the optimal surface topography and roughness. A kinematic model of the cutting tool loci was developed to investigate the formation mechanism of the surface texture and correlate the simulated surface textures with the measured ones. The milled 3D surface topography and anisotropic roughness in the feed and step-over directions were thoroughly characterized and analyzed. The milled surface roughness Ra of less than 0.1μm in the feed direction and 0.15μm in the step-over direction has shown that hard milling is capable of replacing grinding as a finish or semifinish process. Furthermore, the process parameter spaces for the desired surface properties were indentified via the surface contour maps.

1.
Schwach
,
D. W.
, and
Guo
,
Y. B.
, 2005, “
Feasibility of Producing Optimal Surface Integrity by Process Design in Hard Turning
,”
Mater. Sci. Eng., A
0921-5093,
395
, pp.
116
123
.
2.
Field
,
M.
,
Koster
,
W. P.
, and
Kohls
,
J. B.
, 1970, “
Machining of High Strength Steels With Emphasis on Surface Integrity
,” U.S. Air Force Technical Report No. AFML-TR-70-11.
3.
Zarudi
,
I.
, and
Zhang
,
L. C.
, 2002, “
Mechanical Property Improvement of Quenchable Steel by Grinding
,”
J. Mater. Sci.
0022-2461,
37
, pp.
3935
3943
.
4.
Nelson
,
S.
,
Schueller
,
J. K.
, and
Tlusty
,
J.
, 1998, “
Tool Wear in Milling Hardened Die Steel
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
4
), pp.
669
673
.
5.
Iqbal
,
A.
,
He
,
N.
,
Li
,
L.
, and
Dar
,
N. U.
, 2007, “
A Fuzzy Expert System for Optimizing Parameters and Predicting Performance Measures in Hard-Milling Process
,”
Expert Sys. Applic.
0957-4174,
32
, pp.
1020
1027
.
6.
Guo
,
Y. B.
, and
Liu
,
C. R.
, 2002, “
Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
1
9
.
7.
Aslan
,
E.
, 2005, “
Experimental Investigation of Cutting Tool Performance in High Speed Cutting of Hardened X210 Cr12 Cold-Work Tool Steel (62 HRC)
,”
Mater. Des.
0264-1275,
26
(
1
), pp.
21
27
.
8.
Liao
,
Y. S.
, and
Lin
,
H. M.
, 2007, “
Mechanism of Minimum Quantity Lubrication in High-Speed Milling of Hardened Steel
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
11
), pp.
1660
1666
.
9.
Koshy
,
P.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
, 2002, “
High Speed End Milling of Hardened AISI D2 Tool Steel (∼58 HRC)
,”
J. Mater. Process. Technol.
0924-0136,
127
(
2
), pp.
266
273
.
10.
Tönshoff
,
H. K.
,
Arendt
,
C.
, and
Amor
,
R. B.
, 2000, “
Cutting of Hardened Steel
,”
CIRP Ann.
0007-8506,
49
(
2
), pp.
547
566
.
11.
Waikar
,
R. A.
, and
Guo
,
Y. B.
, 2008, “
A Comprehensive Characterization of 3D Surface Topography Induced by Hard Turning Versus Grinding
,”
J. Mater. Process. Technol.
0924-0136,
197
(
1–3
), pp.
189
199
.
12.
Toh
,
C. K.
, 2004, “
Surface Topography Analysis in High Speed Finish Milling Inclined Hardened Steel
,”
Precis. Eng.
0141-6359,
28
(
4
), pp.
386
398
.
13.
Mativenga
,
P. T.
, and
Hon
,
K. K. B.
, 2003, “
A Study of Cutting Forces and Surface Finish in High-Speed Machining of AISI H13 Tool Steel Using Carbide Tools With TiAlN Based Coatings
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
(
2
), pp.
143
151
.
14.
Jung
,
T. S.
,
Yang
,
M. Y.
, and
Lee
,
K. J.
, 2005, “
A New Approach to Analysing Machined Surfaces by Ball-End Milling, Part I: Formulation of Characteristic Lines of Cut Remainder
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
25
(
9-10
), pp.
833
840
.
15.
Elbestawi
,
M. A.
,
Ismail
,
F.
, and
Yuen
,
K. M.
, 1994, “
Surface Topography Characterization in Finish Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
2
), pp.
245
255
.
16.
Ghani
,
J. A.
,
Choudhury
,
I. A.
, and
Hassan
,
H. H.
, 2004, “
Application of Taguchi Method in the Optimization of End Milling Parameters
,”
J. Mater. Process. Technol.
0924-0136,
145
(
1
), pp.
84
92
.
17.
Vivancos
,
J.
,
Luis
,
C. J.
, and
Costa
,
L.
, 2004, “
Optimal Machining Parameters Selection in High Speed Milling of Hardened Steels for Injection Moulds
,”
J. Mater. Process. Technol.
0924-0136,
155–156
, pp.
1505
1512
.
18.
Vivancos
,
J.
,
Luis
,
C. J.
, and
Ortiz
,
J. A.
, 2005, “
Analysis of Factors Affecting the High-Speed Side Milling of Hardened Die Steels
,”
J. Mater. Process. Technol.
0924-0136,
162–163
, pp.
696
701
.
19.
Axinte
,
D. A.
, and
Dewes
,
R. C.
, 2002, “
Surface Integrity of Hot Work Tool Steel After High Speed Milling-Experimental Data and Empirical Models
,”
J. Mater. Process. Technol.
0924-0136,
127
(
3
), pp.
325
335
.
20.
Liu
,
X. B.
,
Soshi
,
M.
, and
Sahasrabudhe
,
A.
, 2006, “
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
74
85
.
21.
Yan
,
J.
,
Takahashi
,
Y.
, and
Tamaki
,
J.
, 2006, “
Ultraprecision Machining Characteristics of Poly-Crystalline Germanium
,”
JSME Int. J., Ser. C
1340-8062,
49
(
1
), pp.
63
69
.
22.
Shaw
,
M. C.
, 2005,
Metal Cutting Principles
,
Oxford University Press
,
New York
.
23.
Lin
,
W. S.
, 2008, “
The Study of Precision Hard Turning of the Hardened Mold Steel
,”
Key Eng. Mater.
1013-9826,
364–366
, pp.
640
643
.
24.
Lai
,
H. Y.
, and
Chen
,
C. K.
, 2006, “
Surface Fine Grinding Via a Regenerative Grinding Methodology
,”
J. Phys.: Conf. Ser.
1742-6588,
48
, pp.
1210
1221
.
You do not currently have access to this content.