Equal channel angular extrusion (ECAE) is a relatively novel forming process to modify microstructure via severe plastic deformation without modification of the sample cross section. In this study, an optimized design of die geometry is presented, which improves homogeneity of the plastic deformation and decreases the pressing force required for extrusion. Then, a typical semicrystalline polymer (high density polyethylene) was subjected to multipass ECAE using two different processing routes: route A where the sample orientation is kept constant between passes and route C where the sample is rotated by 180 deg. Compression tests at room temperature and under different strain rates were used to identify the material parameters of a phenomenological elastic-viscoplastic model. Two-dimensional finite element analysis of ECAE process was carried out, thus allowing to check out the homogeneity of the plastic strain distribution. The effects of die geometry, number of passes, processing route, and friction coefficient on the plastic strain distribution were studied. The simulations were performed for three channel angles (i.e., 90 deg, 120 deg, and 135 deg), considering different corner angles. According to simulation results, recommendations on the angular extrusion of the polymer are provided for improving die and process performance.

1.
Stolyarov
,
V. V.
,
Zhu
,
Y. T.
,
Lowe
,
T. C.
,
Islamgaliev
,
R. K.
, and
Valiev
,
R. Z.
, 2000, “
Processing Nanocrystalline Ti and Its Nanocomposites From Micrometer-Sized Ti Powder Using High Pressure Torsion
,”
Mater. Sci. Eng., A
0921-5093,
282
, pp.
78
85
.
2.
Rhodes
,
C. G.
,
Mahoney
,
M. W.
,
Bingel
,
W. H.
,
Spurling
,
R. A.
, and
Bampton
,
C. C.
, 1997, “
Effects of Friction Stir Welding on Microstructure of 7075 Aluminum
,”
Scr. Mater.
1359-6462,
36
, pp.
69
75
.
3.
Saito
,
Y.
,
Tsuji
,
N.
,
Utsunomiya
,
H.
,
Sakai
,
T.
, and
Hong
,
R. G.
, 1998, “
Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process
,”
Scr. Mater.
1359-6462,
39
, pp.
1221
1227
.
4.
Segal
,
V. M.
, 1995, “
Materials Processing by Simple Shear
,”
Mater. Sci. Eng., A
0921-5093,
197
, pp.
157
164
.
5.
Iwahashi
,
Y.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1998, “
The Process of Grain Refinement in Equal-Channel Angular Pressing
,”
Acta Mater.
1359-6454,
46
, pp.
3317
3331
.
6.
Li
,
S.
, and
Beyerlein
,
I. J.
, 2005, “
Modelling Texture Evolution in Equal Channel Angular Extrusion of bcc Materials: Effects of Processing Route and Initial Texture
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
509
530
.
7.
Semiatin
,
S. L.
,
Delo
,
D. P.
, and
Shell
,
E. B.
, 2000, “
The Effect of Material Properties and Tooling Design on Deformation and Fracture During Equal Channel Angular Extrusion
,”
Acta Mater.
1359-6454,
48
, pp.
1841
1851
.
8.
Zaïri
,
F.
,
Aour
,
B.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
, and
Lefebvre
,
J. M.
, 2007, “
Influence of the Initial Yield Strain Magnitude on the Materials Flow in Equal-Channel Angular Extrusion Process
,”
Scr. Mater.
1359-6462,
56
, pp.
105
108
.
9.
Prangnell
,
P. B.
,
Harris
,
C.
, and
Roberts
,
S. M.
, 1997, “
Finite Element Modelling of Equal Channel Angular Extrusion
,”
Scr. Mater.
1359-6462,
37
, pp.
983
989
.
10.
Yang
,
Y. L.
, and
Lee
,
S.
, 2003, “
Finite Element Analysis of Strain Conditions After Equal Channel Angular Extrusion
,”
J. Mater. Process. Technol.
0924-0136,
140
, pp.
583
587
.
11.
Dupuy
,
L.
,
Blandin
,
J. J.
, and
Rauch
,
E. F.
, 2000, “
Structural and Mechanical Properties in AA 5083 Processed by ECAE
,”
Mater. Sci. Technol.
0267-0836,
16
, pp.
1256
1258
.
12.
Nishida
,
Y.
,
Arima
,
H.
,
Kim
,
J. C.
, and
Ando
,
T.
, 2001, “
Rotary-Die Equal-Channel Angular Pressing of an Al-7 Mass% Si-0.35mass% Mg Alloy
,”
Scr. Mater.
1359-6462,
45
, pp.
261
266
.
13.
Son
,
I. H.
,
Lee
,
J. H.
, and
Im
,
Y. T.
, 2006, “
Finite Element Investigation of Equal Channel Angular Extrusion With Back Pressure
,”
J. Mater. Process. Technol.
0924-0136,
171
, pp.
480
487
.
14.
Nakashima
,
K.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1998, “
Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing
,”
Acta Mater.
1359-6454,
46
, pp.
1589
1599
.
15.
Aour
,
B.
,
Zaïri
,
F.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
, and
Lefebvre
,
J. M.
, 2006, “
Numerical Investigation on Equal Channel Angular Extrusion Process of Polymers
,”
Comput. Mater. Sci.
0927-0256,
37
, pp.
491
506
.
16.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
, 2006, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
0079-6425,
51
, pp.
881
981
.
17.
Sue
,
H. J.
,
Dilan
,
H.
, and
Li
,
C. K. Y.
, 1999, “
Simple Shear Plastic Deformation Behavior of Polycarbonate Plate Due to the Equal Channel Angular Extrusion Process. I: Finite Element Methods Modeling
,”
Polym. Eng. Sci.
0032-3888,
39
, pp.
2505
2515
.
18.
Li
,
C. K. Y.
,
Xia
,
Z. Y.
, and
Sue
,
H. J.
, 2000, “
Simple Shear Plastic Deformation Behavior of Polycarbonate Plate. II: Mechanical Property Characterization
,”
Polymer
0032-3861,
41
, pp.
6285
6293
.
19.
Xia
,
Z.
,
Sue
,
H. J.
, and
Hsieh
,
A. J.
, 2001, “
Impact Fracture Behavior of Molecularly Orientated Polycarbonate Sheets
,”
J. Appl. Polym. Sci.
0021-8995,
79
, pp.
2060
2066
.
20.
Weon
,
J. I.
,
Creasy
,
T. S.
,
Sue
,
H. J.
, and
Hsieh
,
A. J.
, 2005, “
Mechanical Behavior of Polymethylmethacrylate With Molecules Oriented Via Simple Shear
,”
Polym. Eng. Sci.
0032-3888,
45
, pp.
314
324
.
21.
Sue
,
H. J.
, and
Li
,
C. K. Y.
, 1998, “
Control of Orientation of Lamellar Structure in Linear Low Density Polyethylene Via a Novel Equal Channel Angular Extrusion Process
,”
J. Mater. Sci. Lett.
0261-8028,
17
, pp.
853
856
.
22.
Campbell
,
B.
, and
Edward
,
G.
, 1999, “
Equal Channel Angular Extrusion of Polyalkenes
,”
Plast. Rubber Compos.
1465-8011,
28
, pp.
467
475
.
23.
Xia
,
Z.
,
Sue
,
H. J.
, and
Rieker
,
T. P.
, 2000, “
Morphological Evolution of Poly(Ethylene Terephthalate) During Equal Channel Angular Extrusion Process
,”
Macromolecules
0024-9297,
33
, pp.
8746
8755
.
24.
Xia
,
Z.
,
Sue
,
H. J.
,
Hsieh
,
A. J.
, and
Huang
,
J. W. L.
, 2001, “
Dynamic Mechanical Behavior of Oriented Semicrystalline Polyethylene Terephthalate
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
39
, pp.
1394
1403
.
25.
Creasy
,
T. S.
, and
Kang
,
Y. S.
, 2005, “
Fibre Fracture During Equal-Channel Angular Extrusion of Short Fibre-Reinforced Thermoplastics
,”
J. Mater. Process. Technol.
0924-0136,
160
, pp.
90
98
.
26.
Segal
,
V. M.
, 2003, “
Slip Line Solutions, Deformation Mode and Loading History During Equal Channel Angular Extrusion
,”
Mater. Sci. Eng., A
0921-5093,
345
, pp.
36
46
.
27.
Iwahashi
,
Y.
,
Wang
,
J.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1996, “
Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials
,”
Scr. Mater.
1359-6462,
35
, pp.
143
146
.
28.
Goforth
,
R. E.
,
Hartwig
,
K. T.
, and
Cornwell
,
L. R.
, 2000,
Investigations and Applications of Severe Plastic Deformation
,
T. C.
Lowe
and
R. Z.
Valiev
, eds.,
Kluwer
,
The Netherlands
.
29.
Zaïri
,
F.
,
Aour
,
B.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
, and
Lefebvre
,
J. M.
, 2006, “
Numerical Modelling of Elastic-Viscoplastic Equal Channel Angular Extrusion Process of a Polymer
,”
Comput. Mater. Sci.
0927-0256,
38
, pp.
202
216
.
30.
Furuno
,
K.
,
Akamatsu
,
H.
,
Oh-ishi
,
K.
,
Furukawa
,
M.
,
Horita
,
Z.
, and
Langdon
,
T. G.
, 2004, “
Microstructural Development in Equal-Channel Angular Pressing Using a 60° Die
,”
Acta Mater.
1359-6454,
52
, pp.
2497
2507
.
31.
Kim
,
H. S.
, 2006, “
On the Effect of Acute Angles on Deformation Homogeneity in Equal Channel Angular Pressing
,”
Mater. Sci. Eng., A
0921-5093,
430
, pp.
346
349
.
32.
Nakashima
,
K.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 2000, “
Development of a Multi-Pass Facility for Equal-Channel Angular Pressing to High Total Strains
,”
Mater. Sci. Eng., A
0921-5093,
281
, pp.
82
87
.
33.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
, 1988, “
Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
0167-6636,
7
, pp.
15
33
.
34.
Buckley
,
C. P.
, and
Jones
,
D. C.
, 1995, “
Glass-Rubber Constitutive Model for Amorphous Polymers Near the Glass Transition
,”
Polymer
0032-3861,
36
, pp.
3301
3312
.
35.
Tervoort
,
T. A.
,
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Govaert
,
L. E.
, 1997, “
A Constitutive Equation for the Elasto-Viscoplastic Deformation of Glassy Polymers
,”
Mech. Time-Depend. Mater.
1385-2000,
1
, pp.
269
291
.
36.
Nikolov
,
S.
, and
Doghri
,
I.
, 2000, “
A Micro/Macro Constitutive Model for the Small-Deformation Behavior of Polyethylene
,”
Polymer
0032-3861,
41
, pp.
1883
1891
.
37.
Boyce
,
M. C.
,
Socrate
,
S.
, and
Llana
,
P. G.
, 2000, “
Constitutive Model for the Finite Deformation Stress-Strain Behavior of Poly(Ethylene Terephthalate) Above the Glass Transition
,”
Polymer
0032-3861,
41
, pp.
2183
2201
.
38.
Ahzi
,
S.
,
Makradi
,
A.
,
Gregory
,
R. V.
, and
Edie
,
D. D.
, 2003, “
Modeling of Deformation Behavior and Strain-Induced Crystallization in Poly(Ethylene Terephthalate) Above the Glass Transition Temperature
,”
Mech. Mater.
0167-6636,
35
, pp.
1139
1148
.
39.
Makradi
,
A.
,
Ahzi
,
S.
,
Gregory
,
R. V.
, and
Edie
,
D. D.
, 2005, “
A Two-Phase Self-Consistent Model for the Deformation and Phase Transformation Behavior of Polymers Above the Glass Transition Temperature: Application to PET
,”
Int. J. Plast.
0749-6419,
21
, pp.
741
758
.
40.
Dupaix
,
R. B.
, and
Krishnan
,
D.
, 2006, “
A Constitutive Model for Strain-Induced Crystallization in Poly(Ethylene Terephthalate) (PET) During Finite Strain Load-Hold Simulations
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
28
33
.
41.
Van Dommelen
,
J. A. W.
,
Parks
,
D. M.
,
Boyce
,
M. C.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2003, “
Micromechanical Modeling of the Elasto-Viscoplastic Behavior of Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
519
541
.
42.
Zhang
,
C.
, and
Moore
,
I. D.
, 1997, “
Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
0032-3888,
37
, pp.
413
420
.
43.
Krempl
,
E.
, and
Ho
,
K.
, 2000, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,”
ASTM Spec. Tech. Publ.
0066-0558,
1357
, pp.
118
137
.
44.
Colak
,
O. U.
, and
Dusunceli
,
N.
, 2006, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
572
578
.
45.
Khan
,
F.
, and
Krempl
,
E.
, 2006, “
Amorphous and Semicrystalline Solid Polymers: Experimental and Modeling Studies of Their Inelastic Deformation Behaviors
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
64
72
.
46.
Ben Hadj Hamouda
,
H.
,
Laiarinandrasana
,
L.
, and
Piques
,
R.
, 2007, “
Viscoplastic Behaviour of a Medium Density Polyethylene (MDPE): Constitutive Equations Based on Double Nonlinear Deformation Model
,”
Int. J. Plast.
0749-6419,
23
, pp.
1307
1327
.
47.
Kim
,
H. S.
, and
Estrin
,
Y.
, 2005, “
Microstructural Modelling of Equal Channel Angular Pressing for Producing Ultrafine Grained Materials
,”
Mater. Sci. Eng., A
0921-5093,
410–411
, pp.
285
289
.
48.
Yamaguchi
,
D.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1999, “
Significance of Adiabatic Heating in Equal-Channel Angular Pressing
,”
Scr. Mater.
1359-6462,
41
, pp.
791
796
.
49.
Kim
,
H. S.
, 2002, “
Finite Element Analysis of Deformation Behaviour of Metals During Equal Channel Multi-Angular Pressing
,”
Mater. Sci. Eng., A
0921-5093,
328
, pp.
317
323
.
You do not currently have access to this content.