This paper deals with the development of an online monitoring system based on feature-level sensor fusion and its application to OD plunge grinding. Different sensors are used to measure acoustic emission, spindle power, and workpiece vibration signals, which are used to monitor three of the most common faults in grinding—workpiece burn, chatter, and wheel wear. Although a number of methods have been reported in recent literature for monitoring these faults, they have not found widespread application in industry as no single method or feature has been shown to be successful for all setups and for all wheel-workpiece combinations. This paper proposes a systematic approach, which allows the development and deployment of process-monitoring systems via automated sensor and feature selection combined with parameter-free model training, both of which are especially crucial for implementation in industry. The proposed algorithm makes use of “sparsity-promoting” penalty terms to encourage sensor and feature selection while the “hyperparameters” of the algorithm are tuned using an approximation of the leave-one-out error. Experimental results obtained for monitoring burn, chatter, and wheel wear from a plunge grinding test bed show the effectiveness of the proposed method.

1.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Wiley
,
New York
.
2.
Tonshoff
,
H. K.
,
Friemuth
,
T.
, and
Becker
,
J. C.
, 2002, “
Process Monitoring in Grinding
,”
CIRP Ann.
0007-8506,
51
, pp.
551
571
.
3.
Inasaki
,
I.
,
Karpuschewski
,
B.
, and
Lee
,
H. S.
, 2001, “
Grinding Chatter—Origin and Suppression
,”
CIRP Ann.
0007-8506,
50
, pp.
515
534
.
4.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
, 2004, “
Machining Process Monitoring and Control: The State-Of-The-Art
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
297
310
.
5.
Inasaki
,
I.
, 1999, “
Sensor Fusion for Monitoring and Controlling Grinding Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
730
736
.
6.
Kwak
,
J. S.
, and
Ha
,
M. K.
, 2004, “
Intelligent Diagnostic Technique of Machining State for Grinding
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
23
, pp.
436
443
.
7.
Liu
,
Q.
,
Chen
,
X.
, and
Gindy
,
N.
, 2005, “
Fuzzy Pattern Recognition of AE Signals for Grinding Burn
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
811
818
.
8.
Wang
,
Z.
,
Willett
,
P.
,
DeAguiar
,
P. R.
, and
Webster
,
J.
, 2001, “
Neural Network Detection of Grinding Burn From Acoustic Emission
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
283
309
.
9.
Tonshoff
,
H. K.
,
Karpuschewski
,
B.
, and
Regent
,
C.
, 1999, “
Process Monitoring in Grinding Using Micromagnetic Techniques
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
694
698
.
10.
Gradisek
,
J.
,
Baus
,
A.
,
Govekar
,
E.
,
Klocke
,
F.
, and
Grabec
,
I.
, 2003, “
Automatic Chatter Detection in Grinding
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1397
1403
.
11.
Hwang
,
T. W.
,
Whitenton
,
E. P.
,
Hsu
,
N. N.
,
Blessing
,
G. V.
, and
Evans
,
C. J.
, 2000, “
Acoustic Emission Monitoring of High Speed Grinding of Silicon Nitride
,”
Ultrasonics
0041-624X,
38
, pp.
614
619
.
12.
Inasaki
,
I.
, 1998, “
Application of Acoustic Emission Sensor for Monitoring Machining Processes
,”
Ultrasonics
0041-624X,
36
, pp.
273
281
.
13.
Shi
,
Z.
, and
Malkin
,
S.
, 2006, “
Wear of Electroplated CBN Grinding Wheels
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
110
118
.
14.
Dornfeld
,
D.
, and
Cai
,
H. G.
, 1984, “
Investigation of Grinding and Wheel Loading Using Acoustic Emission
,”
ASME J. Eng. Ind.
0022-0817,
106
, pp.
28
33
.
15.
Fan
,
K. C.
,
Lee
,
M. Z.
, and
Mou
,
J. I.
, 2002, “
On-Line Non-Contact System for Grinding Wheel Wear Measurement
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
, pp.
14
22
.
16.
Furutani
,
K.
,
Ohguro
,
N.
,
Hieu
,
N. T.
, and
Nakamura
,
T.
, 2002, “
In-Process Measurement of Topography Change of Grinding Wheel by Using Hydrodynamic Pressure
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1447
1453
.
17.
Scholkopf
,
B.
, and
Smola
,
A. J.
, 2002,
Learning With Kernels
,
MIT
,
Cambridge, MA
.
18.
Guyon
,
I.
, and
Elisseeff
,
A.
, 2003, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
1532-4435,
3
, pp.
1157
1182
.
19.
Kohavi
,
R.
, and
John
,
G. H.
, 1997, “
Wrappers for Feature Subset Selection
,”
Artif. Intell.
0004-3702,
97
, pp.
273
324
.
20.
Hall
,
M. A.
, and
Holmes
,
G.
, 2003, “
Benchmarking Attribute Selection Techniques for Discrete Class Data Mining
,”
IEEE Trans. Knowl. Data Eng.
1041-4347,
15
, pp.
1437
1447
.
21.
Neal
,
R. M.
, 1996,
Bayesian Learning for Neural Networks
,
Springer
,
New York
.
22.
Williams
,
C. K. I.
, and
Barber
,
D.
, 1998, “
Bayesian Classification With Gaussian Processes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
20
, pp.
1342
1351
.
23.
Sun
,
J.
,
Hong
,
G. S.
,
Rahman
,
M.
, and
Wong
,
Y. S.
, 2004, “
Identification of Feature Set for Effective Tool Condition Monitoring by Acoustic Emission Sensing
,”
Int. J. Prod. Res.
0020-7543,
42
, pp.
901
918
.
24.
Chapelle
,
O.
,
Vapnik
,
V.
,
Bousquet
,
O.
, and
Mukherjee
,
S.
, 2002, “
Choosing Multiple Parameters for Support Vector Machines
,”
Mach. Learn.
0885-6125,
46
, pp.
131
159
.
25.
Vapnik
,
V.
, 1998,
Statistical Learning Theory
,
Wiley
,
New York
.
26.
Bo
,
L.
,
Wang
,
L.
, and
Jiao
,
L.
, 2006, “
Feature Scaling for Kernel Fisher Discriminant Analysis Using Leave-One-Out Cross Validation
,”
Neural Comput.
0899-7667,
18
, pp.
961
978
.
27.
Krishnapuram
,
B.
,
Hartemink
,
A. J.
,
Carin
,
L.
, and
Figueiredo
,
M. A. T.
, 2004, “
A Bayesian Approach to Joint Feature Selection and Classifier Design
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
26
, pp.
1105
1111
.
28.
Neumann
,
J.
,
Schnorr
,
C.
, and
Steidl
,
G.
, 2005, “
Combined SVM-Based Feature Selection and Classification
,”
Mach. Learn.
0885-6125,
61
, pp.
129
150
.
29.
Subrahmanya
,
N.
, and
Shin
,
Y. C.
, 2007, “
Sparse Multiple Kernel Learning for Signal Processing Applications
,”
IEEE Tans. Pattern Anal. Mach. Intell.
, submitted.
30.
Cawley
,
G. C.
, 2006, “
Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs
,”
Proceedings of the International Joint Conference on Neural Networks (IJCNN-2006)
,
Vancouver, BC, Canada
, Jul. 16–21, pp
1661
1668
.
31.
Rifkin
,
R.
, and
Klautau
,
A.
, 2004, “
In Defense of One-Vs-All Classification
,”
J. Mach. Learn. Res.
1532-4435,
5
, pp.
101
141
.
32.
Suykens
,
J. A. K.
,
Van Gestel
,
T.
,
De Brabanter
,
J.
,
De Moor
,
B.
, and
Vandewalle
,
J.
, 2002,
Least Squares Support Vector Machines
,
World Scientific
,
Singapore
.
33.
Allen
,
D. M.
, 1974, “
The Relationship Between Variable Selection and Prediction
,”
Technometrics
0040-1706,
16
, pp.
125
127
.
34.
Subrahmanya
,
N.
,
Choi
,
T.
, and
Shin
,
Y. C.
, 2007, “
Model-Based Optimization of the OD Plunge Grinding Process via Generalized Intelligent Grinding Advisory System (GIGAS)
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
35
, pp.
489
496
.
35.
Li
,
H.
, and
Shin
,
Y. C.
, 2007, “
A Study on Chatter Boundaries of Cylindrical Plunge Grinding Processes With Process Condition Dependent Dynamics
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
10
), pp.
1563
1572
.
36.
Sun
,
J.
,
Rahman
,
M.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
, 2004, “
Multiclassification of Tool Wear With Support Vector Machine by Manufacturing Loss Consideration
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
1179
1187
.
You do not currently have access to this content.