During the removal of encrustation from marble with 355nm laser pulses, the effects of the thin liquid layer covering the encrustation are experimentally and numerically investigated. The working mechanism of the liquid layer is analyzed. A two-dimensional axial symmetric model is proposed to simulate the changes in the temperature, liquid volumetric fraction, and vapor pressure in the irradiated encrustation. To model the conservation of mass, momentum, and energy, three coupled nonlinear partial differential equations are numerically solved. The measured porosity of the encrustation is incorporated into the model. Marble cleaning with three different liquids having different thermodynamic properties, distilled water, ethanol, and acetone, are compared in terms of the cleaning efficiency at different fluence levels. With the liquid layer, the surface color of cleaned marble is also studied. In addition, surface-enhanced raman spectroscopy and a chromameter are used to identify the chemical constituents and measure the color of the cleaned marble, respectively.

1.
Asmus
,
J. F.
,
Munk
,
W.
, and
Murphy
,
C.
, 1974, “
Studies on the Interaction of Laser Radiation With Art Artifacts
,”
Proc. Soc. Photo-Opt. Instrum. Eng.
0361-0748,
4
, pp.
19
27
.
2.
Siano
,
S.
,
Fabiani
,
F.
,
Pini
,
R.
,
Salimbeni
,
R.
,
Giamello
,
M.
, and
Sabatini
,
G.
, 2000a, “
Determination of Damage Thresholds to Prevent Side Effects in Laser Cleaning of Pliocene Sandstone of Siena
,”
J. Cultural Heritage
1296-2074,
1
, pp.
s47
s53
.
3.
Klein
,
S.
,
Fekrsanati
,
F.
,
Hildenhagen
,
J.
,
Dickmann
,
K.
,
Uphoff
,
H.
,
Marakis
,
Y.
, and
Zafiropulos
,
V.
, 2001, “
Discoloration of Marble During Laser Cleaning by Nd:YAG Laser Wavelengths
,”
Appl. Surf. Sci.
0169-4332,
171
, pp.
242
251
.
4.
Zhang
,
J.
,
Birnbaum
,
A. J.
,
Yao
,
Y. L.
,
Xu
,
F.
, and
Lombardi
,
J. R.
, 2007, “
Effect of Fluence on the Discoloration of Marble Cleaned With UV Lasers
,”
Appl. Surf. Sci.
0169-4332,
253
(
6
), pp.
3083
3092
.
5.
Kim
,
D.
, and
Lee
,
J.
, 2004, “
On the Physical Mechanism of Liquid-Assisted Laser Cleaning
,”
J. Appl. Phys.
0021-8979,
93
(
1
), pp.
762
764
.
6.
Lu
,
Y. F.
,
Song
,
W. D.
,
Zhang
,
Y.
, and
Low
,
T. S.
, 1998, “
Theoretical Model and Experimental Study for Dry and Steam Laser Cleaning
,”
Proc. SPIE
0277-786X,
3550
, pp.
7
18
.
7.
Laboure
,
M.
,
Bromblet
,
P.
,
Orial
,
G.
,
Wiedemann
,
G.
, and
Simon-Boisson
,
C.
, 2000, “
Assessment of Laser Cleaning Rate On Limestones and Sandstones
,”
J. Cultural Heritage
1296-2074,
1
, pp.
s21
s27
.
8.
Siano
,
S.
,
Fabiani
,
F.
,
Caruso
,
D.
,
Pini
,
R.
, and
Salimbeni
,
R.
, 2000, “
Laser Cleaning of Stones: Assessment of Operative Parameters, Damage Thresholds and Associated Optical Diagnostics
,”
Proc. SPIE
0277-786X,
4070
, pp.
27
35
.
9.
Cooper
,
M.
,
Emmony
,
D.
, and
Larson
,
J.
, 1995, “
Characterization of Laser Cleaning of Limestone
,”
Opt. Laser Technol.
0030-3992,
27
, pp.
69
73
.
10.
Thomas
,
G.
, 2002, “
Thermal Properties of Gypsum Plasterboard at High Temperature
,”
Fire Mater.
0308-0501,
26
, pp.
37
45
.
11.
Whitaker
,
S.
, 1977, “
Simultaneous Heat, Mass and Momentum Transfer in Porous Media: A Theory of Drying
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
119
200
.
12.
Ahmed
,
G.
, and
Hurst
,
J.
, 1997, “
Coupled Heat and Mass Transport Phenomena in Siliceous Aggregate Concrete Slabs Subjected to Fire
,”
Fire Mater.
0308-0501,
21
, pp.
161
168
.
13.
Civan
,
F.
, and
Sliepcevich
,
C. M.
, 1987, “
Limitation in the Apparent Heat Capacity Formulation for Heat Transfer With Phase Changes
,”
Proc. Okla. Acad. Sci.
,
67
, pp.
83
88
.
14.
Wei
,
C. K.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1985, “
Heat and Mass Transfer in Water-Laden Sandstone: Convective Heating
,”
AIChE J.
0001-1541,
31
(
8
), pp.
1338
1348
.
15.
Bažant
,
Z. P.
, and
Zi
,
G.
, 2003, “
Decontamination of Radionuclides From Concrete by Microwave Heating. I: Theory
,”
J. Eng. Mech.
0733-9399,
129
(
7
), pp.
777
784
.
16.
Ang
,
C. N.
, and
Wang
,
Y. C.
, 2004, “
The Effect of Water Movement on Specific Heat of Gypsum Plasterboard in Heat Transfer Analysis Under Natural Fire Exposure
,”
Constr. Build. Mater.
0950-0618,
18
, pp.
505
515
.
17.
Li
,
L. Y.
,
Purkiss
,
J. A.
, and
Tenchev
,
R. T.
, 2002, “
An Engineering Model for Coupled Heat and Mass Transfer Analysis in Heated Concrete
,”
J. Mech. Eng. Sci.
0022-2542,
26
, pp.
213
224
.
18.
Edmondson
,
P. T.
,
Grammatika
,
M.
,
Fryer
,
P. J.
, and
Handy
,
B.
, 2005, “
Modelling of Heat Transfer, Mass Transfer and Flavor Development in Chocolate Crumb
,”
Seventh World Congress of Chemical Engineering
, Vol.
83
, Issue No.
2
, pp.
89
98
.
19.
Reid
,
R.
,
Prausnitz
,
J. M.
,
Poling
,
B. E.
, 1987,
The Properties of Gases & Liquids
,
McGraw-Hill Book Company
,
New York
.
20.
Hearst
,
J. R.
, and
Nelson
,
P. H.
, 1985,
Well Logging for Physical Properties
,
McGraw-Hill
,
New York
.
21.
Prencipe
,
M.
,
Pascale
,
F.
,
Zicovich-Wilson
,
C.
,
Saunders
,
V.
,
Orlando
,
R.
, and
Dovesi
,
R.
, 2004, “
The Vibrational Spectrum of Calcite (CaCO3): An Ab Initio Quantum-Mechanical Calculation
,”
Phys. Chem. Miner.
0342-1791,
31
, pp.
559
564
.
22.
Faria
,
D.
,
Silva
,
S.
, and
Oliveira
,
M.
, 1997, “
Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides
,”
J. Raman Spectrosc.
0377-0486,
28
, pp.
873
878
.
You do not currently have access to this content.