Laser and water-jet manufacturing processes are independently used to cut monolithic and composite ceramics. While these processes offer many advantages over diamond sawing and other abrasive processes, the energy efficiency, precision, cutting speed, and environmental threats remain as barriers to their continued success. This is partly attributed to the material removal mechanisms, which are melting, and subsequent evaporation (laser) and energy-intensive erosive wear (water jet). In this paper, we describe a novel laser and water-jet (LWJ) hybrid manufacturing process that enables the synergistic effects of CO2 laser and pressurized pure water jet, facilitating precise material removal by thermal shock-induced fracture and overcoming the deficiencies listed above. Experiments of the LWJ effects on the cutting of aluminum nitride, an electronic ceramic substrate, are presented. The most exciting results are very narrow kerf dictated by the crack width; the absence of thermally affected zone, slag formation, chemical decomposition; and controlled thermal cracking, implying that the LWJ process is far superior to conventional laser cutting of ceramics. The LWJ process also improved the surface finish while reducing energy losses in the process. The practical realization of the LWJ manufacturing process could be a potential alternative to diamond saw, high-power laser, and high-pressure abrasive water-jet methods for machining hard and brittle ceramics.

1.
1999,
Machining of Ceramics and Composites
,
S.
Jahanmir
,
M.
Ramulu
, and
P.
Koshy
, eds.,
Dekker
,
New York
.
2.
Migliore
,
L.
, and
Ozkan
,
A.
, 2003, “
Laser Cutting of Aluminum Nitride
,”
Proc. SPIE
0277-786X,
5063
, pp.
505
508
.
5.
Quintero
,
F.
,
Varas
,
F.
,
Pou
,
J.
,
Lusquiños
,
F.
,
Boutinguiza
,
M.
,
Soto
,
R.
, and
Pérez-Amor
,
F.
, 2005,
J. Phys. D
0022-3727,
38
,
655
666
.
6.
Zhang
,
Z.
, and
Modest
,
M. F.
, 1998,
J. Laser Appl.
1042-346X,
10
(
5
), pp.
212
218
.
7.
Chen
,
L.
,
Siores
,
E.
, and
Wang
,
W.
, 1998,
J. Mater. Process. Technol.
0924-0136,
74
(
1–3
), pp.
251
254
.
8.
Xu
,
S.
, and
Wang
,
J.
, 2006,
Int. J. Adv. Manuf. Technol.
0268-3768,
27
, pp.
693
702
.
10.
Rajurkar
,
K. P.
,
Zhu
,
D.
, and
McGeough
,
J.
, 1999,
CIRP Ann.
0007-8506,
48/2
, pp.
567
580
.
11.
Rajurkar
,
K. P.
, and
Ghodke
,
D.
, 1998, “
Abrasive Electricodischarge Grinding of Silicon Nitride
,”
Proceedings of the ISEM-12
,
Aachen
, pp.
475
484
.
12.
Kozak
,
J.
, and
Rajurkar
,
K. P.
, 2001, “
Laser Assisted Electrochemical Machining
,”
Trans. NAMRI/SME
1047-3025,
XXIX
, pp.
421
427
.
13.
Hasselman
,
D. P. H.
, 1969, “
Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
52
(
11
), pp.
600
604
.
14.
Ashby
,
M. F.
, 1999,
Materials Selection in Mechanical Design
, 2nd ed.,
Butterworth
,
Oxford
.
15.
Hashish
,
M.
, 1989, “
Pressure Effects in Abrasive Waterjet Machining
,”
ASME J. Eng. Mater. Technol.
0094-4289,
111
, pp.
221
228
.
16.
Boley
,
B. A.
, and
Winer
,
J. H.
, 1960,
Theory of Thermal Stresses
,
Wiley
,
New York
.
17.
Billy
,
M.
,
Jarrige
,
J.
,
Lecompte
,
J. P.
,
Mexmain
,
J.
, and
Yefsah
,
S.
, 1982, “
Oxidation Behavior of Hot-Pressed Aluminum Nitride
,”
Rev. Chim. Miner.
0035-1032,
19
(
6
), pp.
673
683
.
18.
Katnani
,
A. D.
, and
Papathomas
,
K. I.
, 1987, “
Kinetics and Initial-Stages of Oxidation of Aluminum Nitride—Thermogravimetric Analysis and X-Ray Photoelectron-Spectroscopy Study
,”
J. Vac. Sci. Technol. A
0734-2101,
5
(
4
), pp.
1335
1340
.
19.
Lee
,
J. W.
,
Radu
,
I.
, and
Alexe
,
M.
, 2002 “
Oxidation Behavior of AIN Substrate at Low Temperature
,”
J. Mater. Sci.: Mater. Electron.
0957-4522,
13
(
3
), pp.
131
137
.
20.
Sato
,
T.
,
Haryu
,
K.
,
Endo
,
T.
, and
Shimada
,
M.
, 1987, “
High-Temperature Oxidation of Hot-Pressed Aluminum Nitride by Water-Vapor
,”
J. Mater. Sci.
0022-2461,
22
(
6
), pp.
2277
2280
.
21.
Suryanarayana
,
D.
, 1990, “
Oxidation-Kinetics of Aluminum Nitride
,”
J. Am. Ceram. Soc.
0002-7820,
73
(
4
), pp.
1108
1110
.
22.
Barnes
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
, 2007, “
Water-Assisted Laser Thermal Shock Machining of Alumina
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
12–13
) pp.
1864
1874
.
You do not currently have access to this content.