Biomaterial direct-write technologies have been receiving more and more attention as rapid prototyping innovations in the area of tissue engineering, regenerative medicine, and biosensor∕actuator fabrication based on computer-aided designs. However, cell damage due to the mechanical impact during cell direct writing has been observed and is a possible hurdle for broad applications of fragile cell direct writing. The objective of this study is to investigate the impact-induced cell mechanical loading profile in cell landing in terms of stress, acceleration, and maximum shear strain component during cell direct writing using a mesh-free smooth particle hydrodynamic method. Such cell mechanical loading profile information can be used to understand and predict possible impact-induced cell damage. It is found that the cell membrane usually undergoes a relatively severe deformation and the cell mechanical loading profile is dependent on the cell droplet initial velocity and the substrate coating thickness. Two important impact processes may occur during cell direct writing: the first impact between the cell droplet and the substrate coating and the second impact between the cell and the substrate. It is concluded that the impact-induced cell damage depends not only on the magnitudes of stress, acceleration, and∕or shear strain but also the loading history that a cell experiences.

1.
Xu
,
T.
,
Petridou
,
S.
,
Lee
,
E. H.
,
Roth
,
E. A.
,
Vyavahare
,
N. R.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2004, “
Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method
,”
Biotechnol. Bioeng.
0006-3592,
85
(
1
), pp.
29
33
.
2.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2005, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
0142-9612,
26
, pp.
93
99
.
3.
Odde
,
D. J.
, and
Renn
,
M. J.
, 2000, “
Laser-Guided Direct Writing of Living Cells
,”
Biotechnol. Bioeng.
0006-3592,
67
, pp.
312
318
.
4.
Ringeisen
,
B. R.
,
Kim
,
H.
,
Barron
,
J. A.
,
Krizman
,
D. B.
,
Chrisey
,
D. B.
,
Jackman
,
S.
,
Auyeung
,
R. Y. C.
, and
Spargo
,
B. J.
, 2004, “
Laser Printing of Pluripotent Embryonal Carcinoma Cells
,”
Tissue Eng.
1076-3279,
10
(
3–4
), pp.
483
491
.
5.
Barron
,
J. A.
,
Ringeisen
,
B. T.
,
Kim
,
H.
,
Spargo
,
B. J.
, and
Chrisey
,
D. B.
, 2004, Application of Laser Printing to Mammalian Cells,
Thin Solid Films
0040-6090,
453–454
, pp.
383
387
.
6.
Hopp
,
B.
,
Smausz
,
T.
,
Kresz
,
N.
,
Barna
,
N.
,
Bor
,
Z.
,
Kolozsvari
,
L.
,
Chrisey
,
D. B.
,
Szabo
,
A.
, and
Nogradi
,
A.
, 2005, “
Survival and Proliferative Ability of Various Living Cell Types After Laser-Induced Forward Transfer
,”
Tissue Eng.
1076-3279,
11
(
11∕12
), pp.
1817
1723
.
7.
Ringeisen
,
B. R.
,
Othon
,
C. M.
,
Barron
,
J. A.
,
Young
,
D.
, and
Spargo
,
B. J.
, 2006, “
Jet-Based Methods to Print Living Cells
,”
Biotechnology
0740-7378,
1
, pp.
930
948
.
8.
Young
,
D.
,
Auyeung
,
R. C. Y.
,
Piqué
,
A.
,
Chrisey
,
D. B.
, and
Dlott
,
D. D.
, 2001, “
Time-Resolved Optical Microscopy of a Laser-Based Forward Transfer Process
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
3169
3171
.
9.
Wang
,
W.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
, 2007, “
Numerical Study of Cell Droplet and Hydrogel Coating Impact Process in Cell Direct Writing
,”
Trans. NAMRI/SME
1047-3025,
35
, pp.
217
223
.
10.
LS-DYNA Theory Manual, 2006, Livermore Software Technology Corporation, Livermore, CA.
11.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
, 1977, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
0035-8711,
181
, pp.
375
389
.
12.
Lucy
,
L. B.
, 1977, “
A Numerical Approach to the Testing of Fusion Process
,”
Astron. J.
0004-6256,
88
, pp.
1013
1024
.
13.
Johnson
,
G. R.
,
Stryk
,
R. A.
, and
Neissel
,
S. R.
, 1996, “
SPH for High Velocity Impact Computations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
347
373
.
14.
Liu
,
M. B.
,
Liu
,
G. R.
,
Lam
,
K. Y.
, and
Zong
,
Z.
, 2003, “
Meshfree Particle Simulation of the Detonation Process for High Explosives in Shaped Charge Unlined Cavity Configurations
,”
Shock Waves
0938-1287,
12
, pp.
509
520
.
15.
Ellero
,
M.
, and
Tanner
,
R. I.
, 2005, “
SPH Simulations of Transient Viscoelastic Flows at Low Reynolds Number
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
132
, pp.
61
72
.
16.
Monaghan
,
J. J.
, and
Gingold
,
R. A.
, 1983, “
Shock Simulation by the Particle Method SPH
,”
J. Comput. Phys.
0021-9991,
52
, pp.
374
389
.
17.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
, 2001, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
0142-9612,
22
, pp.
799
806
.
18.
Vijayasekaran
,
S.
,
Fitton
,
J. H.
Hicks
,
C. R.
,
Chirila
,
T. V.
,
Crawford
,
G. J.
, and
Constable
,
I. J.
, 1998, “
Cell Viability and Inflammatory Response in Hydrogel Sponges Implanted in the Rabbit Cornea
,”
Biomaterials
0142-9612,
19
(
24
), pp.
2255
2267
.
19.
Young
,
C. D.
,
Wu
,
J. R.
, and
Tsou
,
T. L.
, 1998, “
High-Strength, Ultra-Thin and Fiber-Reinforced pHEMA Artificial Skin
,”
Biomaterials
0142-9612,
19
, pp.
1745
1752
.
20.
Nam
,
K.
,
Watanabe
,
J.
, and
Ishihara
,
K.
, 2005, “
Network Structure of Spontaneously Forming Physically Cross-Link Hydrogel Composed of Two-Water Soluble Phospholipid Polymers
,”
Polymer
0032-3861,
46
, pp.
4704
4713
.
21.
Wang
,
T.
,
Turhan
,
M.
, and
Gunasekaran
,
S.
, 2004, “
Selected Properties of pH-Sensitive, Biodegradable Chitosan-Poly (Vinyl Alcohol) Hydrogel
,”
Polym. Int.
0959-8103,
53
, pp.
911
918
.
22.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
214
222
.
23.
Drury
,
J. L.
,
Dennis
,
R. G.
, and
Mooney
,
D. J.
, 2004, “
The Tensile Properties of Alginate Hydrogels
,”
Biomaterials
0142-9612,
25
, pp.
3187
3199
.
24.
Lin
,
D. C.
,
Yurke
,
B.
, and
Langrana
,
N. A.
, 2004, “
Mechanical Properties of a Reversible, DNA-Crosslinked Polyacrylamide Hydrogel
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
104
110
.
25.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
, 2006, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
0021-9290,
39
, pp.
195
216
.
26.
Malvern
,
L. E.
, 1969,
Introduction of the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Lanero
,
T. S
,
Cavalleri
,
O.
,
Krol
,
S.
,
Rolandi
,
R.
, and
Gliozzi
,
A.
, 2006, “
Mechanical Properties of Single Living Cells Encapsulated in Polyelectrolyte Matrixes
,”
J. Biotechnol.
0168-1656,
124
, pp.
723
731
.
28.
Lysne
,
P. C.
, 1970, “
A Comparison of Calculated and Measured Low-Stress Hugoniots and Release Adiabats of Dry and Water-Saturated Tuff
,”
J. Geophys. Res.
0148-0227,
75
, pp.
4375
4386
.
29.
Liu
,
M. B.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
, 2002, “
Investigations Into Water Mitigation Using a Meshless Particle Method
,”
Shock Waves
0938-1287,
12
, pp.
181
195
.
30.
Barbee
,
K. A.
, 2005, “
Mechanical Cell Injury
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1066
, pp.
67
84
.
31.
Serbest
,
G.
,
Horwitz
,
J.
,
Jost
,
M.
, and
Barbee
,
K.
, 2006, “
Mechanisms of Cell Death and Neuroprotection by Poloxamer 188 After Mechanical Trauma
,”
FASEB J.
0892-6638,
20
, pp.
308
310
.
32.
Geddes-Klein
,
D. M.
,
Schiffman
,
K. B.
, and
Meaney
,
D. F.
, 2006, “
Mechanisms and Consequences of Neuronal Stretch Injury In Vitro Differ With the Model of Trauma
,”
J. Neurotrauma
0897-7151,
23
(
2
), pp.
193
204
.
33.
Smith
,
A. E.
,
Moxham
,
K. E.
, and
Middelberg
,
A. P. J.
, 2000, “
Wall Material Properties of Yeast Cells. Part II. Analysis
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
2043
2053
.
You do not currently have access to this content.