It is generally believed that organized neural architecture is essential for nervous system development, function, and regeneration. In the absence of guidance cues, regenerating axons may lose their directions and become misaligned, resulting in the formation of neuromas and/or misappropriate connections. To help regenerate axons across damaged regions and guide them to appropriate targets, some bridging devices such as microgrooves are being intensively researched to achieve a better directional axonal growth. This paper reports a novel fabrication process to generate a highly aligned groove texture on the inner surface of semipermeable hollow fiber membranes (HFMs). HFMs have demonstrated promising results in guiding axonal regeneration. The fabrication process utilized a wet phase-inversion procedure with polyurethane (PU) as model polymer, dimethyl sulfoxide (DMSO) as solvent, and water as nonsolvent. Data indicated that highly aligned groove texture could be formed on the HFM inner surface by carefully controlling phase-inversion conditions such as the polymer solution flow rate, and/or nonsolvent flow rate, and/or polymer solution concentration ratio. The texture forming mechanism is qualitatively explained using a PU-DMSO-water ternary phase diagram and the dynamics of fluid instability. Axonal outgrowth on the HFM with aligned grooves showed the highly aligned orientation and improved axonal outgrowth length. This study may eventually lead to a new and effective way to fabricate nerve grafts for the spinal cord injury and nerve damage treatment based on this highly aligned three dimensional scaffold.

1.
Zhang
,
N.
,
Yan
,
H.
, and
Wen
,
X.
, 2005, “
Tissue Engineering Strategies for Axonal Guidance
,”
Brain Res. Rev.
0165-0173,
49
(
1
), pp.
48
64
.
2.
Lu
,
J.
, and
Waite
,
P.
, 1999, “
Advances in Spinal Cord Regeneration
,”
Spine
0362-2436,
24
(
9
), pp.
926
930
.
3.
Tresco
,
P. A.
, 2000, “
Tissue Engineering Strategies for Nervous System Repair
,”
Prog. Brain Res.
0079-6123,
128
, pp.
349
363
.
4.
Bregman
,
B. S.
, 1998, “
Regeneration in the Spinal Cord
,”
Curr. Opin. Neurobiol.
0959-4388,
8
(
6
), pp.
800
807
.
5.
Shuaib
,
A.
,
Xu
,
K.
,
Crain
,
B.
,
Siren
,
A. L.
,
Feuerstein
,
G.
,
Hallenbeck
,
J.
, and
Davis
,
J. N.
, 1990, “
Assessment of Damage From Implantation of Microdialysis Probes in the Rat Hippocampus With Silver Degeneration Staining
,”
Neurosci. Lett.
0304-3940,
112
(
2–3
), pp.
149
154
.
6.
Gerin
,
C.
, and
Privat
,
A.
, 1996, “
Evaluation of the Function of Microdialysis Probes Permanently Implanted Into the Rat CNS and Coupled to an On-Line HPLC System of Analysis
,”
J. Neurosci. Methods
0165-0270,
66
(
2
), pp.
81
92
.
7.
Benveniste
,
H.
, and
Diemer
,
N. H.
, 1987, “
Cellular Reactions to Implantation of a Microdialysis Tube in the Rat Hippocampus
,”
Acta Neuropathol. (Berl)
0001-6322,
74
(
3
), pp.
234
238
.
8.
Nakamura
,
M.
,
Itano
,
T.
,
Yamaguchi
,
F.
,
Mizobuchi
,
M.
,
Tokuda
,
M.
,
Matsui
,
H.
,
Etoh
,
S.
,
Hosokawa
,
K.
,
Ohmoto
,
T.
, and
Hatase
,
O.
, 1990, “
In Vivo Analysis of Extracellular Proteins in Rat Brains With a Newly Developed Intracerebral Microdialysis Probe
,”
Acta Med. Okayama
0386-300X,
44
(
1
), pp.
1
8
.
9.
Hernandez
,
L.
,
Stanley
,
B. G.
, and
Hoebel
,
B. G.
, 1986, “
A Small, Removable Microdialysis Probe
,”
Life Sci.
0024-3205,
39
(
26
), pp.
2629
2637
.
10.
Aebischer
,
P.
,
Winn
,
S. R.
, and
Galletti
,
P. M.
, 1988, “
Transplantation of Neural Tissue in Polymer Capsules
,”
Brain Res.
0006-8993,
448
(
2
), pp.
364
368
.
11.
Emerich
,
D. F.
,
Winn
,
S. R.
,
Harper
,
J.
,
Hammang
,
J. P.
,
Baetge
,
E. E.
, and
Kordower
,
J. H.
, 1994, “
Implants of Polymer-Encapsulated Human NGF-Secreting Cells in the Nonhuman Primate: Rescue and Sprouting of Degenerating Cholinergic Basal Forebrain Neurons
,”
J. Comp. Neurol.
0021-9967,
349
(
1
), pp.
148
164
.
12.
Tresco
,
P. A.
,
Winn
,
S. R.
,
Tan
,
S.
,
Jaeger
,
C. B.
,
Greene
,
L. A.
, and
Aebischer
,
P.
, 1992, “
Polymer-Encapsulated PC12 Cells: Long-Term Survival and Associated Reduction in Lesion-Induced Rotational Behavior
,”
Cell Transplant
0963-6897,
1
(
2–3
), pp.
255
264
.
13.
Winn
,
S. R.
,
Lindner
,
M. D.
,
Lee
,
A.
,
Haggett
,
G.
,
Francis
,
J. M.
, and
Emerich
,
D. F.
, 1996, “
Polymer-Encapsulated Genetically Modified Cells Continue to Secrete Human Nerve Growth Factor for Over One Year in Rat Ventricles: Behavioral and Anatomical Consequences
,”
Exp. Neurol.
0014-4886,
140
(
2
), pp.
126
138
.
14.
Wen
,
X.
, 2003, “
Studies in the Development of a Bridging Device for Guiding Regenerating Axons
,” Ph.D. thesis, University of Utah, Salt Lake City, UT.
15.
Yang
,
F.
,
Murugan
,
R.
,
Wang
,
S.
, and
Ramakrishna
,
S.
, 2005, “
Electrospinning of Nano/Micro Scale Poly(L-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering
,”
Biomaterials
0142-9612,
26
(
15
), pp.
2603
2610
.
16.
Corey
,
J. M.
,
Lin
,
D. Y.
,
Mycek
,
K. B.
,
Chen
,
Q.
,
Samuel
,
S.
,
Feldman
,
E. L.
, and
Martin
,
D. C.
, 2007, “
Aligned Electrospun Nanofibers Specify the Direction of Dorsal Root Ganglia Neurite Growth
,”
J. Biomed. Mater. Res.
0021-9304,
83A
(
3
), pp.
636
645
.
17.
Long
,
Y.
,
Zhang
,
C.
,
Zhang
,
N.
,
Huang
,
Y.
, and
Wen
,
X.
, 2005, “
Formation of Highly Aligned Grooves on the Inner Surface of Semi-Permeable Hollow Fiber Membrane for the Directional Axonal Outgrowth
,”
Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–11, Paper No. IMECE2005-81235, pp.
1
9
.
18.
Zhang
,
N.
,
Zhang
,
C.
, and
Wen
,
X.
, 2005, “
Fabrication of Semi-Permeable Hollow Fiber Membranes With Highly Aligned Texture for Nerve Guidance
,”
J. Biomed. Mater. Res.
0021-9304,
75A
(
4
), pp.
941
949
.
19.
van de Witte
,
P.
,
Dijkstra
,
P. J.
,
van den Berg
,
J. W. A.
, and
Feijen
,
J.
, 1996, “
Review: Phase Separation Process in Polymer Solutions in Relation to Membrane Formation
,”
J. Membr. Sci.
0376-7388,
117
, pp.
1
31
.
20.
Kim
,
J. H.
,
Min
,
B. R.
,
Won
,
J.
,
Park
,
H. C.
, and
Kang
,
Y. S.
, 2001, “
Phase Behavior and Mechanism of Membrane Formation for Polyimide/DMSO/Water System
,”
J. Membr. Sci.
0376-7388,
187
, pp.
47
55
.
21.
Chung
,
T. S.
, and
Hu
,
X.
, 1997, “
Effect of Air-Gap Distance on the Morphology and Thermal Properties of Polyethersulfone Hollow Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
66
, pp.
1067
1077
.
22.
Chung
,
T. S.
,
Xu
,
Z. L.
, and
Lin
,
W. H.
, 1999, “
Fundamental Understanding of the Effect of Air Gap Distance on the Fabrication of the Hollow Fiber Membranes
,”
J. Appl. Polym. Sci.
0021-8995,
72
, pp.
379
395
.
23.
Tompa
,
H.
, 1956,
Polymer Solutions
,
Butterworths
,
London
.
24.
Barton
,
B. F. J.
,
Reeve
,
L.
, and
Mchugh
,
A. J.
, 1998, “
Observations on the Dynamics of Nonsolvent-Induced Phase Inversion
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
35
(
4
), pp.
569
585
.
25.
Lipscomb
,
G. G.
, 1994, “
The Melt Hollow Fiber Spinning Process: Steady State Behavior, Sensitivity and Stability
,”
Polym. Adv. Technol.
1042-7147,
5
, pp.
745
758
.
26.
Oh
,
T. H.
,
Lee
,
M. S.
,
Kim
,
S. Y.
, and
Shim
,
H. J.
, 1998, “
Studies on Melt-Spinning Process of Hollow Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
68
, pp.
1209
1217
.
27.
Su
,
Y.
,
Lipscomb
,
G. G.
,
Balasubramanian
,
H.
, and
Lloyd
,
D. R.
, 2006, “
Observations of Recirculation in the Bore Fluid During Hollow Fiber Spinning
,”
AIChE J.
0001-1541,
52
(
6
), pp.
2072
2078
.
28.
Pinnau
,
I.
, and
Koros
,
W. J.
, 1993, “
A Qualitative Skin Layer Formation Mechanism for Membrane Made by Dry/Wet Phase Inversion
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
31
, pp.
419
427
.
29.
Perez
,
S.
,
Merlen
,
E.
,
Robert
,
E.
,
Cohen Addad
,
J. P.
, and
Viallat
,
A.
, 1993, “
Characterization of the Surface Layer of Integrally Skinned Polyimide Membranes: Relationship With Their Mechanism of Formation
,”
J. Appl. Polym. Sci.
0021-8995,
47
, pp.
1621
1631
.
30.
McKelvey
,
S. A.
, and
Koros
,
W. J.
, 1996, “
Phase Separation, Vitrification, and the Manifestation of Macrovoids in Polymeric Asymmetric Membranes
,”
J. Membr. Sci.
0376-7388,
112
, pp.
29
39
.
31.
Smolders
,
C. A.
,
Reuvers
,
A. J.
,
Boom
,
R. M.
, and
Wienk
,
I. M.
, 1992, “
Microstructures in Phase Inversion Membrances. Part 1. Formation of Macrovoid
,”
J. Membr. Sci.
0376-7388,
73
, pp.
259
275
.
32.
Machado
,
P. S. T.
,
Habert
,
A. C.
, and
Borges
,
C. P.
, 1999, “
Membrane Formation Mechanism Based on Precipitation Kinetics and Membrane Morphology: Flat and Hollow Fiber Polysulfone Membranes
,”
J. Membr. Sci.
0376-7388,
155
, pp.
1171
1183
.
33.
Santoso
,
Y. E.
,
Chung
,
T. S.
,
Wang
,
K. Y.
, and
Weber
,
W.
, 2006, “
The Investigation of Irregulation Inner Skin Morphology of Hollow Fiber Membranes at High-Speed Spinning and the Solutions to Overcome It
,”
J. Membr. Sci.
0376-7388,
282
, pp.
383
392
.
34.
Frish
,
H. L.
,
Nielaba
,
P.
, and
Binda
,
K.
, 1995, “
Surface Effects on Spinodal Decomposition in the Framework of a Linearized Theory
,”
Phys. Rev. E
1063-651X,
52
(
3
), pp.
2848
2859
.
35.
Milling
,
A. J.
,
Richards
,
R. W.
,
Baines
,
F. L.
,
Armes
,
S. P.
, and
Billinham
,
N. C.
, 2001, “
Surface Viscoelastic Parameters of Poly((Dimethylamino)Ethylmethacrylate-Methyl methacrylate) Diblock Copolymer Solutions: pH Dependence of the Evolution of the Equilibrium Values
,”
Macromolecules
0024-9297,
34
, pp.
4173
4179
.
36.
Frommer
,
M. A.
, and
Messalem
,
R. M.
, 1973, “
Mechanism of Membrane Formation. VI. Convective Flows and Large Void Formation During Membrane Precipitation
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
12
(
4
), pp.
328
333
.
37.
Noblin
,
X.
,
Buguin
,
A.
, and
Brochard-Wyart
,
F.
, 2002, “
Fast Dynamics of Floating Triple Lines
,”
Langmuir
0743-7463,
18
, pp.
9350
9356
.
38.
Dayal
,
P.
, and
Kyu
,
T.
, 2006, “
Porous Fiber Formation in Polymer-Solvent System Undergoing Solvent Evaporation
,”
J. Appl. Phys.
0021-8979,
100
, p.
043512
.
You do not currently have access to this content.