In this paper an analytical model for stability limit predictions in turning and boring operations is proposed. The multidimensional model includes the three-dimensional geometry of the processes resulting in an eigenvalue problem. In addition, a model for the chip thickness at the insert nose is proposed to observe the effect of the insert nose radius on the chatter stability limit. The model represents a development over existing ones due to accurate treatment of the multidimensional process dynamics and geometry, and resulting practical formulas for stability limit predictions. Chatter experiments are conducted for both turning and boring in order to verify the model predictions, and overall, an acceptable agreement is observed.

1.
Tlusty
,
J.
, and
Polacek
,
M.
, 1963, “
The Stability of Machine Tools Against Self Excited Vibrations in Machining
,”
Proceedings of the International Research in Production Engineering Conference
,
Pittsburgh, PA
,
ASME
,
New York
, pp.
465
474
.
2.
Tobias
,
S. A.
, and
Fishwick
,
W.
, 1958, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
Trans. ASME
0097-6822,
80
, pp.
1079
1088
.
3.
Minis
,
I.
, and
Yanushevsky
,
T.
, 1993, “
A New Theoretical Approach for the Prediction of the Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
1
8
.
4.
Budak
,
E.
, and
Altintas
(Y)
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation—Part II: Application to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
22
36
.
5.
Marui
,
E.
,
Ems
,
S.
, and
Kato
,
S.
, 1983, “
Chatter Vibration of Lathe Tools—Part 1: General Characteristics of Chatter Vibration
,”
ASME J. Eng. Ind.
0022-0817,
105
, pp.
100
106
.
6.
Marui
,
E.
,
Ems
,
S.
, and
Kato
,
S.
, 1983, “
Chatter Vibration of Lathe Tools—Part 2: On the Mehanisms of Energy Supply
,”
ASME J. Eng. Ind.
0022-0817,
105
, pp.
107
113
.
7.
Kaneko
,
T.
,
Sato
,
H.
,
Tani
,
Y.
, and
O-Hori
,
M.
, 1984, “
Self-Excited Chatter and Its Marks in Turning
,”
ASME J. Eng. Ind.
0022-0817,
106
, pp.
106
228
.
8.
Minis
,
I. E.
,
Magrab
,
E. B.
, and
Pandelidis
,
I. O.
, 1990, “
Improved Methods for the Prediction of Chatter in Turning—Part 3: A Generalized Linear Theory
,”
ASME J. Eng. Ind.
0022-0817,
112
, pp.
12
20
.
9.
Rao
,
C. B.
, and
Shin
,
Y. C.
, 1999, “
A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
1631
1654
.
10.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
22
30
.
11.
Clancy
,
B. E.
, and
Shin
,
Y. C.
, 2002, “
A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1035
1044
.
12.
Atabey
,
F.
,
Lazoglu
,
I.
, and
Altintas
,
Y.
, 2003, “
Mechanics of Boring Processes—Part I
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
463
476
.
13.
Lazoglu
,
I.
,
Atabey
,
F.
, and
Altintas
,
Y.
, 2002, “
Dynamic of Boring Processes—Part III: Time Domain
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1567
1576
.
14.
Ozdoganlar
,
O. B.
, and
Endres
,
W. J.
, 2000, “
An Analytical Representation of Chip Area for Corner-Radiused Tools Under Depth-of-Cut and Feed Variations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
660
665
.
15.
Ozdoganlar
,
O. B.
, and
Endres
,
W. J.
, 1998, “
An Analytical Stability Solution for the Turning Process With Depth-Direction Dynamics and Corner-Radiused Tooling
,”
Proc. of ASME IMECE’98, Symp. on Advances in Modeling, Monitoring, and Control of Machining Systems
,
ASME
, New York, Vol.
64
, pp.
511
518
.
16.
Ozdoganlar
,
O. B.
, and
Endres
,
W. J.
, 1997, “
A Structured Fully-Analytical Approach to Multi-Degree-of-Freedom Time-Invariant Stability Analysis for Machining
,”
Proc. of Symp. on Pred. Modeling in Metal Cutting as Means of Bridging Gap Between Theory and Practice
,
ASME
, New York, ASME IMECE’97, Vol.
6-2
, pp.
153
160
.
17.
Reddy
,
R. G.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Liu
,
X.
, 2002, “
A Stability Solution for the Axial Contour-Turning Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
581
587
.
18.
Chandiramani
,
N. K.
, and
Pothala
,
T.
, 2006, “
Dynamics of 2-DOF Regenerative Chatter During Turning
,”
J. Sound Vib.
0022-460X,
290
, pp.
448
464
.
19.
Ozlu
,
E.
, and
Budak
,
E.
, “
Comparison of One Dimensional Oriented Transfer Function Stability Model vs. Multi Dimensional Stability Model in Turning Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955, .
20.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
, 1969,
The Machining of Metals
,
Prentice-Hall
, Englewood Cliffs, NJ.
21.
Armarego
,
E. J. A.
, and
Whitfield
,
R. C.
, 1985, “
Computer Based Modeling of Popular Machining Operations for Force and Power Predictions
,”
CIRP Ann.
0007-8506,
34
, pp.
65
69
.
22.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
, 1996, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
216
224
.
23.
Altintas
,
Y.
, and
Budak
,
E.
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
, pp.
357
362
.
24.
Altintas
,
Y.
, and
Weck
,
M.
, 2004, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
0007-8506,
53
(
2
), pp.
619
642
.
25.
Altintas
,
Y.
, 2000,
Manufacturing Automation
,
Cambridge University Press
, Cambridge, England.
26.
Ozlu
,
E.
, and
Budak
,
E.
, 2006, “
Analytical Modeling of Chatter Stability in Turning and Boring Operations—Part II: Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
733
739
.
You do not currently have access to this content.