A fast method called the “inverse approach” for sheet forming modeling is based on the assumptions of the proportional loading and simplified tool actions. To improve the stress estimation, the pseudo-inverse approach was recently developed: some realistic intermediate configurations are geometrically determined to consider the deformation paths; two new efficient algorithms of plastic integration are proposed to consider the loading history. In the direct scalar algorithm (DSA), an elastic unloading-reloading factor γ is introduced to deal with the bending-unbending effects; the equation in unknown stress vectors is transformed into a scalar equation using the notion of the equivalent stress, thus the plastic multiplier Δλ can be directly obtained without iterative resolution scheme. In the γ-return mapping algorithm, the equivalent plastic strain increment estimated by DSA is taken as the initial solution in Simo’s return mapping algorithm, leading to a stable, efficient, and accurate plastic integration scheme. The numerical experience has shown that these two algorithms give a considerable reduction of CPU time in the plastic integration.

1.
Gerdeen
,
J. C.
, and
Chen
,
P.
, 1989, “
Geometric Mapping Method of Computer Modeling of Sheet Metal Forming
,” NUMIFORM
89
, pp.
437
444
.
2.
Sowerby
,
R.
, 1982, “
Determination of Large Strains in Metal Forming
,”
J. Strain Anal. Eng. Des.
0309-3247,
17
(
4
), pp.
95
101
.
3.
Chung
,
K.
, and
Lee
,
D.
, 1984, “
Computer-Aided Analysis of Sheet Material Forming Processes
,” 1st Int. Conf. on Technology of Plasticity, Tokyo, Vol.
1
, pp.
660
665
.
4.
Sklad
,
M. P.
, and
Yungblud
,
B. A.
, 1992, “
Analysis of Multi-Operation Sheet Forming Processes
,” NUMIFORM
92
, pp.
543
547
.
5.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Sheet Forming Process Design on Ideal Forming Theory
,” NUMIFORM
92
, pp.
455
460
.
6.
Chateau
,
X.
, 1994, “
A Simplified Approach for Sheet Forming Processes Design
,”
Int. J. Mech. Sci.
0020-7403,
36
(
6
), pp.
579
597
.
7.
El Mouatassim
,
M.
,
Thomas
,
B.
,
Jameux
,
J. P.
, and
Di Pasquale
,
E.
, 1995, “
An Industrial Finite Element Code for One Step Simulation of Sheet Metal Forming
,” NUMIFORM
95
, pp.
761
766
.
8.
Liu
,
S. D.
, and
Assempoor
,
A.
, 1995, “
Development of FAST 3D: A Design-Oriented One Step FEM in Sheet Metal Forming
,” COMPLAS IV, P. II, pp.
1515
1526
.
9.
Liu
,
S. D.
,
Kolodziejski
,
J.
,
Assempoor
,
A.
,
Aboutour
,
T.
, and
Cheng
,
W.
, 1996, “
Development of a Fast Design and Trouble-Shooting FEM in Sheet Metal Forming
,” 19th IDDRG Biennal Congress, June, pp.
265
276
.
10.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Detraux
,
J. M.
, and
Duroux
,
P.
, 1990, “
Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
1385
1401
.
11.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Bouabdallah
,
S.
, and
Naceur
,
H.
, 2000, “
Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach
,”
Comput. Struct.
0045-7949,
78
, pp.
133
148
.
12.
Lee
,
C.
, and
Cao
,
J.
, 2001, “
Shell Element Formulation of Multi-Step Inverse Analysis for Axisymmetric Deep Drawing Process
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
3
), pp.
681
706
.
13.
Guo
,
Y. Q.
,
Li
,
Y. M.
,
Bogard
,
F.
, and
Debray
,
K.
, 2004, “
An Efficient Pseudo-Inverse Approach for Damage Modelling in the Sheet Forming Process
,”
J. Mater. Process. Technol.
0924-0136,
151
(
1–3
), pp.
88
97
.
14.
Guo
,
Y. Q.
,
Li
,
Y. M.
,
Bogard
,
F.
,
Titeux
,
I.
, and
Debray
,
K.
, 2004, “
An Efficient Algorithm of Plastic Integration for Damage Modelling in Sheet Forming Process
,” 8th Int. Conf. on Numerical Methods in Industrial Forming Processes NUMIFORM, 2004.
15.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1986, “
A Return Mapping Algorithm for Plane Stress Elastoplasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
22
pp.
649
670
.
16.
Simo
,
J. C.
, and
Ortiz
,
M.
, 1985, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
51
, pp.
221
245
.
17.
Ortiz
,
M.
, and
Simo
,
J. C.
, 1986, “
An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Equations
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
353
366
.
18.
Lee
,
S. W.
, and
Yoon
,
J. W.
, and
Yang
,
D. Y.
, 1998, “
A Stress Integration Algorithm for Plane Stress Elastoplasticity and Its Applications to Explicit Finite Element Analysis of Sheet Metal Forming Process
,”
Comput. Struct.
0045-7949,
66
(
2-3
), pp.
301
311
.
19.
Huétink
,
J.
,
v.d. Boogaard
,
A. H.
,
Rietman
,
A. D.
,
Lof
,
J.
, and
Meinders
,
T.
, 1999, “
A Mixed Elastoplastic/Rigid Plastic Material Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1421
1434
.
20.
Meinders
,
T.
,
van den Boogaard
,
A. H.
,
Huétink
,
J.
, 1999, “
A Mixed Elastoplastic/Rigid Plastic Material Model
,”
Proc. of 4th International Conference on Numerical Simulations of 3-D Sheet Metal Forming Processes
,
J. C.
Gelin
and
P.
Picard
, eds., Besançon-France, BURS Edition, Vol. 1, pp.
137
142
.
You do not currently have access to this content.