Microextrusion has recently emerged as a feasible manufacturing process to fabricate metallic micropins having characteristic dimensions on the order of less <1mm. At this length scale, the deformation of the workpiece is dominated by the so-called size effects, e.g., material property and frictional behavior variations at small length scales. In extrusion experiments performed to produce submillimeter-sized pins having a base diameter of 0.76mm and an extruded diameter of 0.57mm, the extruded pins exhibited a curving tendency when a workpiece with a relatively coarse grain size of 211μm was used. This phenomenon was not observed when workpieces with a finer grain size of 32μm were used. In this paper, results from microhardness tests and microstructure analyses for both grain sizes are presented to investigate this phenomenon and to characterize the deformation during microextrusion. The results obtained from this analysis show that as the grain size approaches the specimen feature size, the deformation characteristics of the extruded pins are dominated by the size and location of specific grains, leading to a nonuniform distribution of plastic strain and measured hardness and, thus, the curving tendency. Microhardness tests of the initial billet material and tensile test specimens are also presented as supplementary analyses.

1.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
, 2001, “
Microforming
,”
CIRP Ann.
0007-8506,
50
(
2
), pp.
445
462
.
2.
Vollertsen
,
F.
,
Hu
,
Z.
,
Schulze Niehoff
,
H.
, and
Theiler
,
C.
, 2004, “
State of the Art in Micro Forming and Investigations Into Micro Deep Drawing
,”
J. Mater. Process. Technol.
0924-0136,
151
, pp.
70
79
.
3.
Peng
,
X.
,
Qin
,
Y.
, and
Balendra
,
R.
, 2004, “
Analysis of Laser-Heating Methods for Micro Stamping Applications
,”
J. Mater. Process. Technol.
0924-0136,
150
, pp.
84
91
.
4.
Saotome
,
Y.
,
Yasuda
,
K.
, and
Kaga
,
H.
, 2001, “
Microdeep Drawability of Very Thin Sheet Steels
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
641
647
.
5.
Saotome
,
Y.
, and
Okamoto
,
T.
, 2001, “
An In-Situ Incremental Microforming System for Three-Dimensional Shell Structures of Foil Materials
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
636
640
.
6.
Saotome
,
Y.
, and
Iwazaki
,
H.
, 2001, “
Superplastic Backward Microextrusion of Microparts for Micro-Electro-Mechanical Systems
,”
J. Mater. Process. Technol.
0924-0136,
119
, pp.
307
311
.
7.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H.
,
Liu
,
W. K.
, and
Swanson
,
A.
, 2004, “
Microforming—Experimental Investigation of the Extrusion Process for Micropins and Its Numerical Simulation Using RKEM
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
642
652
.
8.
Raulea
,
L. V.
,
Goijaerts
,
A. M.
,
Govaert
,
L. E.
, and
Baaijens
,
F. P. T.
, 2001, “
Size Effects in the Processing of Thin Metal Sheets
,”
J. Mater. Process. Technol.
0924-0136,
115
, pp.
44
48
.
9.
Michel
,
J. F.
, and
Picart
,
P.
, 2003, “
Size Effects on the Constitutive Behavior for Brass in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
141
, pp.
439
446
.
10.
Engel
,
U.
, and
Eckstein
,
R.
, 2002, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
0924-0136,
125-126
, pp.
35
44
.
11.
Egerer
,
E.
, and
Engel
,
U.
, 2004, “
Process Characterization and Material Flow in Microforming at Elevated Temperatures
,”
J. Manuf. Process.
1526-6125,
6
(
1
), pp.
11
16
.
12.
Krishnan
,
N.
,
Cao
,
J.
, and
Dohda
,
K.
, 2007, “
Study of the Size Effect on Friction Conditions in Micro-Extrusion—Part 1: Micro-Extrusion Experiments and Analysis
,”
ASME J. Manuf. Sci. Eng.,
1087-1357
129
.
13.
Brinell
,
J. A.
, 1900, 2ième congres, Internationale Métheodes d’Essai, Paris.
14.
Bauccio
,
M.
, ed., 1993,
ASM Metals Reference Book
, 3rd ed.,
ASM International
, Materials Park, OH.
15.
Cheng
,
Y-T.
, and
Cheng
,
C-M.
, 2004, “
Scaling, Dimensional Analysis and Indentation Measurements
,”
Mater. Sci. Eng., R.
0927-796X,
44
, pp.
91
149
.
16.
Lim
,
Y. Y.
, and
Chaudhri
,
M. M.
, 2002, “
The Influence of Grain Size on the Indentation Hardness of High-Purity Copper and Aluminum
,”
Philos. Mag. A
0141-8610,
82
, pp.
2071
2080
.
17.
Poole
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
, 1996, “
Micro-Hardness of Annealed and Work-Hardened Copper Polycrystals
,”
Scr. Mater.
1359-6462,
34
(
4
), pp.
559
564
.
18.
Elmustafa
,
A. A.
,
Ananda
,
A. A.
, and
Elmahboub
,
W. M.
, 2004, “
Bilinear Behavior in Nano and Microindentation Tests of FCC Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
353
359
.
19.
Nix
,
W. D.
, and
Gao
,
H.
, 1998, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
46
(
3
), pp.
411
425
.
20.
Tabor
,
D.
, 1951, “
The Hardness of Metals
,”
Oxford University Press
, London, pp.
16
18
.
21.
Jindal
,
P. C.
, and
Armstrong
,
R. W.
, 1967, “
The Dependence of the Hardness of Cartridge Brass on Grain Size
,”
Trans. Metall. Soc. AIME
0543-5722,
239
, pp.
1856
1857
.
22.
Avitzur
,
B.
, 1971, “
Study of Flow Through Conical Converging Dies
,”
Metal Forming: Interrelation Between Theory and Practice
,
A. L.
Hoffman
, ed.,
Plenum Press
, New York, pp.
9
21
.
23.
Dieter
, Jr.,
G. E.
, 1961,
Mechanical Metallurgy
,
McGraw-Hill
, New York.
24.
Mori
,
L.
,
Krishnan
,
N.
,
Cao
,
J.
, and
Espinosa
,
H. D.
, 2007, “
Study of the Size Effects and Friction Conditions in Micro-Extrusion—Part II: Size Effect in Dynamic Friction for Brass-Steel Pairs
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
.
25.
Cullity
,
B. D.
, and
Stock
,
S. R.
, 2001,
Elements of X-Ray Diffraction
,
Prentice-Hall
, Englewood Cliffs, NJ, pp.
402
403
.
You do not currently have access to this content.