Despite enormous progress in laser aided direct metal/material deposition (LADMD) process many issues concerning the adverse effects of process parameters on the stability of a variety of properties and the integrity of microstructure have been reported. Comprehensive understanding of the transport phenomena and heat transfer analysis is essential to predict the thermally induced stresses in the deposited materials. A complete model that provides a quantitative relationship between process parameters, temperature history, phase transformation kinetics, and the thermal stresses is highly desirable. This paper examines the effect of deposition patterns and phase transformation kinetics on induced thermal stresses. The proposed model is based on the metallo-thermo-mechanical theory for sequentially coupled temperature, phase transformation, and stress/strain fields. Finite element analysis of various deposition processes illustrates the significant effect of deposition patterns on induced thermal stresses. Raster scan, spiral in-to-out, and spiral out-to-in patterns, in conjunction with their experimental verification, have been discussed in this paper. The existing model can easily accommodate any deposition pattern a user may want to study with slight modifications. The effect of substrate preheating on thermal stress is also studied and some reductions in thermal residual stress were observed. The importance of considering phase transformation effects is also verified through the comparison of the magnitudes of residual stresses with and without the inclusion of phase transformation kinetics. The simulation has been carried out for H13 tool steel deposited on a mild steel substrate.

1.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
, and
Hetzner
,
D.
, 1997, “
The Direct Metal Deposition of H13 Tool Steel for 3-D Components
,”
JOM
1047-4838,
49
(
5
), pp.
55
60
.
2.
Choi
,
J.
, and
Chang
,
Y.
, 2005, “
Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
4-5
), pp.
597
607
.
3.
Klingbeil
,
N. W.
,
Beuth
,
J. L.
,
Chin
,
R. K.
, and
Amon
,
C. H.
, 2002, “
Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
57
77
.
4.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
, 2001, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng., A
0921-5093,
317
, pp.
59
64
.
5.
Grum
,
J.
, and
Znidarsic
,
M.
, 2004, “
Microstructure, Microhardness, and Residual Stress Analysis of Laser Surface Cladding of Low-Carbon Steel
,”
Mater. Manuf. Processes
1042-6914,
19
(
2
), pp.
243
258
.
6.
Grum
,
J.
, and
Sturm
,
R.
, 2004, “
A New Experimental Technique for Measuring Strain and Residual Stresses during a Laser Remelting Process
,”
J. Mater. Process. Technol.
0924-0136,
147
, pp.
351
358
.
7.
Inoue
,
T.
, 2002, “
Metallo-Thermo-Mechanics- Application to Quenching
,” in
Handbook of Residual Stress and Deformation of Steel
,
ASM International
, pp.
296
311
.
8.
Inoue
,
T.
,
Ju
,
D. Y.
, and
Arimoto
,
K.
, 1992, “
Metallo-Thermo-Mechanical Simulation of Quenching Process—Theory and Implementation of Computer Code—Hearts
,”
Proceedings of the First International Conference on Quenching & Control of Distortion
, Chicago, IL, Sept. 22–25, pp.
205
212
.
9.
Kahlen
,
F.-J.
, and
Kar
,
A.
, 2001, “
Residual Stresses in Laser-Deposited Metal Parts
,”
J. Laser Appl.
1042-346X,
13
(
12
), pp.
60
69
.
10.
Dai
,
K.
, and
Shaw
,
L.
, 2001, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
1359-6454,
49
, pp.
4171
4181
.
11.
Bokota
,
A.
, and
Iskierka
,
S.
, 1996, “
Effect of Phase Transformation on Stress States in Surface Layer Laser Hardened Carbon Steel
,”
ISIJ Int.
0915-1559,
36
(
11
), pp.
1383
1391
.
12.
Rangaswamy
,
P.
,
Holden
,
T. M.
,
Rogge
,
R. B.
, and
Griffith
,
M. L.
, 2001, “
Residual Stresses in Components Formed by the Laser-Engineered Net Shaping (LENS®) Process
,”
J. Strain Anal. Eng. Des.
0309-3247,
38
(
6
), pp.
519
528
.
13.
Labudovic
,
M.
,
Hu
,
D.
, and
Kovacevic
,
R.
, 2003, “
A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping
,”
J. Mater. Sci.
0022-2461,
38
, pp.
35
49
.
14.
Finnie
,
S.
,
Cheng
,
W.
,
Finnie
,
I.
,
Drezet
,
J. M.
, and
Gremaud
,
M.
, 2003, “
The Computation and Measurement of Residual Stresses in Laser Deposited Layers
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
302
308
.
15.
Das
,
S.
,
Upadhya
,
G.
, and
Chandra
,
U.
, 1992, “
Prediction of Macro-and Micro-Residual Stress in Quenching using Phase Transformation Kinetics
,”
Proceedings of the First International Conference on Quenching & Control of Distortion
, ASM International, Chicago, IL, pp.
229
234
.
16.
Kirkaldy
,
J. S.
, and
Venugopalan
,
D.
, 1984, “
Prediction of Microstructure and Hardenability in Low Alloy Steels
,” in Phase Transformations in Ferrous Alloys, Am. Inst. Min. Engrs., pp.
125
148
.
17.
Watt
,
D. F.
,
Coon
,
L.
,
Bibby
,
M.
,
Goldak
,
J.
, and
Henwood
,
C.
, 1988, “
An Algorithm for Modeling Microstructural Development in Weld Heat-Affected Zones (Part A) Reaction Kinetics
,”
Acta Metall.
0001-6160,
36
(
11
), pp.
3029
3035
.
18.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1982, “
A First Report on Diagrams for Grain Growth in Welds
,”
Acta Metall.
0001-6160,
30
, pp.
1969
1978
.
19.
Oddy
,
A. S.
,
Goldak
,
J. A.
, and
McDill
,
J. M. J.
, 1989, “
Transformation Effects in the 3D Finite Element Analysis of Welds
,”
Proceedings of the Second International Conference on Trends in Welding Research
,
ASM International
, Gatlinburg, TN, May 15–19.
20.
Jarvstrat
,
N.
, and
Sjostrom
,
S.
, 1993, “
Current Status of TRAST; A Material Model Subroutine System for the Calculation of Quench Stresses in Steel
,” ABAQUS User’s Conference Proceedings.
21.
Denis
,
S.
, 1996, “
Considering Stress-Phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses
,”
J. Phys. IV
1155-4339,
6
, pp.
C1
-159–C1-
174
.
22.
Roelens
,
J. B.
,
Maltrud
,
F.
, and
Lu
,
J.
, 1994, “
Determination of Residual Stresses in Submerged Arc Multi-Pass Welds by means of Numerical Simulation and Comparison with Experimental Results
,”
Weld. World
0043-2288,
33
(
3
), pp.
152
159
.
23.
Andersson
,
B. A. B.
, 1978, “
Thermal Stresses in a Submerged-Arc Welded Joint Considering Phase Transformations
,”
ASME J. Eng. Mater. Technol.
0094-4289,
100
, pp.
356
362
.
24.
Choi
,
J.
, and
Mazumder
,
J.
, 2002, “
Numerical and Experimental Analysis for Solidification and Residual Stresses in GMAW process for AISI 304 Stainless Steel
,”
J. Mater. Sci.
0022-2461,
37
, pp.
2143
2158
.
25.
Kelly
,
S. M.
, and
Kampe
,
S. L.
, 2004, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characteristics
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
1861
1867
.
26.
Kelly
,
S. M.
, and
Kampe
,
S. L.
, 2004, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part II. Thermal Modeling
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
1869
1879
.
27.
Calrslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Oxford U.P.
, Oxford.
28.
Ghosh
,
S.
, and
Choi
,
J.
, 2005, “
Three-Dimensional Transient Finite Element Analysis for Residual Stresses in the Laser Aided Direct Metal/Material Deposition Process
,”
J. Laser Appl.
1042-346X,
17
(
3
), pp.
144
158
.
29.
ABAQUS/Standard User’s Manual and Keywords Manual, version 6.4.
30.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
, 1970, “
Thermo Physical Properties of Matter-The TPRC Data Series by Purdue University
,”
IFI/Plenum Data Corp.
, New York.
31.
Ghosh
,
S.
, 2003, “
Three-Dimensional Transient Residual Stress FE Analysis for Single and Double Pass Laser Aided Direct Metal/Material Deposition Process
,” M.S. thesis, University of Missouri-Rolla.
32.
Gardon
,
R.
, and
Cobonque
,
J.
, 1961, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on it
,” International Conference on Heat Transfer, Part II, pp.
454
460
.
33.
Steen
,
W. M.
, 1976, “
The Printing of Laser Generated Heat Images in Cobalt Oxide on Glass Substrates
,” Ph.D. thesis, Imperial College, London.
34.
Boyer
,
H. E.
, and
Gray
,
A. G.
, 1977,
Atlas of Isothermal Transformation and Cooling Transformation Diagrams
,
American Society for Metals
, Metals Park, OH.
35.
Choi
,
J.
, and
Mazumder
,
J.
, 1994, “
Non-Equilibrium Synthesis of Fe-Cr-C-W alloy by Laser Cladding
,”
J. Mater. Sci.
0022-2461,
29
, pp.
4460
4476
.
36.
Choi
,
J.
,
Choudhuri
,
S. K.
, and
Mazumder
,
J.
, 2000, “
Role of Preheating and Specific Energy Input on the Evolution of Microstructure and Wear Properties of Laser Clad Fe-Cr-C-W Alloys
,”
J. Mater. Sci.
0022-2461,
35
, pp.
3213
3219
.
37.
Ghosh
,
S.
, and
Choi
,
J.
, 2006, “
Modeling and Experimental Verification of Transient/Residual Stresses and Microstructure Formation in Multi-Layer Laser Aided DMD Process
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
662
679
.
You do not currently have access to this content.