This paper discusses the effects of ploughing and friction in microscale machining. The friction coefficient has previously been shown to be sensitive to the geometry of the abrasive particle and the depth of indentation. From a micromachining standpoint, the friction coefficient is modeled to be a function of the tool edge radius and the undeformed chip thickness, wherein the tool edge is modeled as a sliding cylinder on a flat workpiece. The contributions of ploughing force, which assumes significance in microscale machining, are better modeled using an integration approach over the edge of the tool. Two force models for the estimation of ploughing forces are compared, wherein one model uses a slip-line field analysis and the other uses a method of force balance on the deformation boundary. Basic microcutting (shaping) experimental data are presented and compared to the prediction results. The results show that a nonuniform friction coefficient improves the predictability of the force model.

1.
Sin
,
H. C.
,
Saka
,
N.
, and
Suh
,
N. P.
, 1979, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
0043-1648,
55
, pp.
163
190
.
2.
Okazaki
,
Y.
,
Mishima
,
N.
, and
Ashida
,
K.
, 2004, “
Microfactory—Concept, History and Developments
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
837
844
.
3.
Merchant
,
M. E.
, 1945, “
Mechanics of Metal Cutting Process
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
318
.
4.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
, Chichester, UK.
5.
Albrecht
,
P.
, 1960, “
New Developments in the Theory of Metal Cutting Process
,”
ASME J. Eng. Ind.
0022-0817,
82
, pp.
348
358
.
6.
Hsu
,
T. C.
, 1966, “
A Study of the Shear and Normal Stresses on a Cutting Tool
,”
ASME J. Eng. Ind.
0022-0817,
88
, pp.
51
64
.
7.
Adbelmoneim
,
M. ES.
, and
Scrutton
,
R. F.
, 1974, “
Tool Edge Roundness and Stable Build-up Formation in Finish Machining
,”
ASME J. Eng. Ind.
0022-0817,
96
(
4
), pp.
1258
1267
.
8.
Connolly
,
R.
, and
Rubenstein
,
C.
, 1968, “
The Mechanics of Continuous Chip Formation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
8
, pp.
159
187
.
9.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
, 2000, “
A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
384
390
.
10.
Waldrof
,
D. J.
, 2004, “
A Simplified Model for Ploughing Forces in Turning
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
32
, pp.
447
454
.
11.
Waldrof
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 1998, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
693
699
.
12.
Fang
,
N.
, 2003, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
715
742
.
13.
Liu
,
K.
,
Li
,
X.
, and
Liang
,
S. Y.
, 2001, “
Modeling of Ductile Cutting of Tungsten Carbide
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
29
, pp.
251
258
.
14.
Zorev
,
N. N.
, 1966,
Metal Cutting Mechanics
,
Pergamon Press
, London.
15.
Arsecularatne
,
J. A.
, 1997, “
On Tool-Chip Interface Stress Distributions Ploughing Force and Size Effect in Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
7
), pp.
885
899
.
16.
Li
,
X.
, 1997, “
Development of a Predictive Model for Stress Distributions at the Tool-Chip Interface in Machining
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
169
174
.
17.
Son
,
S. M.
,
Lim
,
H. S.
, and
Ahn
,
J. H.
, 2005, “
Effects of the Friciton Coefficient on the Minimum Cutting Thickness in Micro Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
529
535
.
18.
Suh
,
N. P.
, and
Sin
,
H. C.
, 1981, “
The Genesis of Friciton
,”
Wear
0043-1648,
69
, pp.
91
114
.
19.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subject to Large Strains, High Strain Rates and High Temperatures
,”
Proc. of Seventh International Symposium on Ballistics
,
The Hague
,
pp.
541
547
.
20.
Zhang
,
L.
, and
Tanaka
,
H.
, 1997, “
Towards a Deeper Understanding of Wear and Friciton on the Atomic Scale—A Molecular Dynamics Analysis
,”
Wear
0043-1648,
211
, pp.
44
53
.
21.
Bhushan
,
B.
, and
Nosonovsky
,
M.
, 2004, “
Comprehensive Model for Scale Effects in Friction Due to Adhesion and Two- and Three-Body Deformation (Plowing)
,”
Acta Mater.
1359-6454,
52
, pp.
2461
2474
.
22.
Bhushan
,
B.
, 2002,
Introduction to Tribology
,
Wiley
, New York.
23.
Bhushan
,
B.
, 1999,
Principles and Applications of Tribology
,
Wiley
, New York.
24.
Sin
,
H.
,
Saka
,
N.
, and
Suh
,
N. P.
, 1979, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
0043-1648,
55
, pp.
163
190
.
25.
Cox
,
D.
,
Newby
,
G.
,
Park
,
H. W.
, and
Liang
,
S. Y.
, 2004, “
Performance Evaluation of a Miniaturized Machining Center for Precision Manufacturing
,” ASME International Mechanical Engineering Congress and Exposition, Anaheim.
You do not currently have access to this content.