The explicit finite difference formulation of an inverse heat transfer model to calculate the heat flux generated by induction is developed. The experimentally measured temperature data are used as the input for the inverse heat transfer model. This model is particularly suitable for a workpiece with low cross section Biot number. Induction heating experiments are carried out using a carbon steel rod. The finite difference method and thermocouple temperature measurements are applied to estimate the induction heat flux and workpiece temperature. Compared to measured temperatures, the accuracy and limitation of proposed method is demonstrated. The effect of nonuniform temperature distribution, particularly in the heating region during the induction heating, is studied. Analysis results validate the assumption to use the uniform temperature in a cross section for the inverse heat transfer solution of induction heat flux. Sensitivity to the grid spacing, thermocouple location, and thermophysical properties are also studied.

1.
Brown
,
G. H.
,
Hoyler
,
C. N.
, and
Bierwirth
,
R. A.
, 1947,
Therory and Application of Radio-Frequency Heating
,
Van Nostrand
, NY.
2.
Rudnev
,
V.
,
Loveless
,
D.
,
Cook
,
R.
, and
Black
,
M.
, 2003,
Handbook of Induction Heating
,
Marcel Dekker
, NY.
3.
Simpson
,
P. G.
, 1960,
Induction Heating
,
McGraw-Hill
, NY.
4.
Orfueil
,
M.
, 1987,
Electric Process Heating
,
Battelle Press
, Ohio.
5.
Semiatin
,
S. L.
, 1986,
Induction Heat Treatment of Steel
,
American Society for Metals
, Ohio.
6.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang
,
H. T.
, 1992, “
Finite Element Simulation of Induction Heat Treatment and Quenching of Steel
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
20
, pp.
83
90
.
7.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang
,
H. T.
, 1995, “
Finite Element Simulation of Moving Induction Heat Treatment
,”
J. Mater. Eng. Perform.
1059-9495,
4
(
4
), pp.
460
473
.
8.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang
,
H. T.
, 1992, “
Finite Element Simulation of Induction Heat Treatment
,”
J. Mater. Eng. Perform.
1059-9495,
1
(
1
), pp.
97
112
.
9.
ter Maten
,
E. J. W.
, and
Melissen
,
J. B. M.
, 1992, “
Simulation of Inductive Heating
,”
IEEE Trans. Magn.
0018-9464,
28
(
2
), pp.
1287
1290
.
10.
Chaboudez
,
C.
,
Clain
,
S.
,
Glardon
,
R.
,
Mari
,
D.
,
Rappaz
,
J.
, and
Swierkosz
,
M.
, 1997, “
Numerical Modeling in Induction Heating for Axisymmetric Geometries
,”
IEEE Trans. Magn.
0018-9464,
33
(
1
), pp.
739
745
.
11.
Chaboudez
,
C.
,
Clain
,
S.
,
Glardon
,
R.
,
Rappaz
,
J.
,
Swierkosz
,
M.
, and
Touzani
,
R.
, 1994, “
Numerical Modeling of Induction Heating of Long Workpieces
,”
IEEE Trans. Magn.
0018-9464,
30
(
6
), pp.
5028
5037
.
12.
Melander
,
M.
, 1985, “
Computer Predictions of Progressive Induction Hardening of Cylindrical Components
,”
Mater. Sci. Technol.
0267-0836,
1
(
10
), pp.
877
882
.
13.
Kurek
,
K.
,
Przylucki
,
R.
, and
Ulrych
,
B.
, 1996, “
Nonstationary Thermal Field in the Induction Heating System with Axial Symmetry
,”
Acta Tech. CSAV
0001-7043 (Ceskoslovensk Akademie Ved),
41
(
4
), pp.
405
417
.
14.
Skoczkowski
,
T. P.
, and
Kalus
,
M. F.
, 1989, “
The Mathematical Model of Induction Heating of Ferromagnetic Pipes
,”
IEEE Trans. Magn.
0018-9464,
25
(
3
), pp.
2745
2750
.
15.
Labridis
,
D.
, and
Dokopoulos
,
P.
, 1989, “
Calculation of Eddy Current Losses in Nonlinear Ferromagnetic Materials
,”
IEEE Trans. Magn.
0018-9464,
25
(
3
), pp.
2665
2669
.
16.
El-Kaddah
,
N.
,
Craen
,
R.
, and
Loue
,
W.
, 1998, “
Mathematical Model of Induction Heating of Thixoformable Aluminum Billets
,” Light Metals, in
Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the 127th TMS Annual Meeting, San Antonio, Texas, February 15–19
, pp.
1097
1102
.
17.
Kunshchikov
,
V. G.
, 1998, “
Mathematical Model of Induction Heating of a Cylinder for Computer-Aided Manufacturing (CAM)
,”
J. Eng. Phys. Thermophys.
1062-0125,
71
(
3
), pp.
546
550
.
18.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer
,
Taylor & Francis
, NY.
19.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
, NY.
20.
Himmelblau
,
D. M.
, 1972,
Applied Nonlinear Programming
,
McGraw-Hill
, NY.
21.
Bringas
,
J. E.
, and
Wayman
,
M. L.
, 2000,
The Metals Black Book
, 4th ed.,
Casti
, Edmonton, Canada.
You do not currently have access to this content.