Abstract

This paper reports an integrated approach for jointly solving the process selection, machining parameter selection, and tolerance design problems to avoid inconsistent and infeasible decisions. The integrated problem is formulated as a bicriterion model to handle both tangible and intangible costs. The model is solved using a modified Chebyshev goal programming method to achieve a preferred compromise between the two conflicting and noncommensurable criteria. Examples are provided to illustrate the application of the model and the solution procedure. The results show that the decisions on process selection, machining parameter selections, and tolerance design can be made simultaneously with the model.

1.
Petropoulos
,
P. G.
, 1973, “
Optimal Selection of Machining Rate Variables by Geometric Programming
,”
Int. J. Prod. Res.
0020-7543,
11
, pp.
305
314
.
2.
Lambert
B. K.
, and
Walveker
,
A. G.
, 1978, “
Optimization of Multi-Pass Machining Operations
,”
Int. J. Prod. Res.
0020-7543,
16
, pp.
259
265
.
3.
Ermer
,
D.
, and
Kromodihardjo
,
S.
, 1981, “
Optimization of Multipass Turning with Constraints
,”
ASME J. Eng. Ind.
0022-0817,
103
, pp.
462
468
.
4.
Tan
,
F. P.
, and
Creese
,
R. C.
, 1995, “
A Generalized Multi-Pass Machining Model for Machining Parameter Selection in Turning
,”
Int. J. Prod. Res.
0020-7543,
33
(
5
), pp.
1467
1487
.
5.
Kee
,
P.
, 1996, “
Development of Constrained Optimization Analyses and Strategies for Multi-Pass Rough Turning Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
1
), pp.
115
127
.
6.
Gupta
,
R.
,
Batra
,
J. L.
, and
Lal
,
G. K.
, 1995, “
Determination of Optimal Subdivision of Depth of Cut in Multipass Turning with Constraints
,”
Int. J. Prod. Res.
0020-7543,
33
(
9
), pp.
2555
2565
.
7.
Capello
,
E.
, and
Semeraro
,
Q.
, 2002, “
Process Parameters and Residual Stresses in Cylindrical Grinding
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
3
), pp.
615
623
.
8.
Xiao
,
G.
, and
Malkin
,
S.
, 1996, “
On-line Optimization for Internal Plunge Grinding
,”
CIRP Ann.
0007-8506,
45
, pp.
351
356
.
9.
Shunmugam
,
M. S.
,
Reddy
,
S. V.
, and
Narendran
,
T. T.
, 2000, “
Optimal Selection of Parameters in Multi-Tool Drilling
,”
J. Mater. Process. Technol.
0924-0136,
103
(
2
), pp.
318
323
.
10.
Kusiak
,
A.
, and
Feng
,
C. X.
, 1996, “
Robust Tolerance Design for Quality
,”
ASME J. Eng. Ind.
0022-0817,
118
(
1
), pp.
166
169
.
11.
Feng
,
C. X.
, and
Kusiak
,
A.
, 1997, “
Robust Tolerance Design with the Integer Programming Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
4A
), pp.
603
610
.
12.
Feng
,
C. X.
, and
Kusiak
,
A.
, 2000, “
Robust Tolerance Design with the Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
3
), pp.
520
528
.
13.
Anwarul
,
M.
, and
Liu
,
M. C.
, 1995, “
Optimal Manufacturing Tolerance: The Modified Taguchi Approach
,” in
Proceedings of the 4th Ind. Eng. Res. Conf.
, pp.
379
383
.
14.
Choi
,
H.-G. R.
,
Park
,
M.-H.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation with Loss Function
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
273
281
.
15.
Li
,
M. H.
, 2000, “
Quality Loss Function Based Manufacturing Process Setting Models for Unbalanced Tolerance Design
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
(
1
), pp.
39
45
.
16.
Li
,
M. H.
, 2002, “
Unbalanced Tolerance Design and Manufacturing Setting with Asymmetrical Linear Loss Function
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
(
5
), pp.
334
340
.
17.
Ngoi
,
B. K. A.
, and
Ong
,
C. T.
, 1993, “
A Complete Tolerance Charting System
,”
Int. J. Prod. Res.
0020-7543,
31
(
2
), pp.
453
469
.
18.
Ngoi
,
B. K. A.
, and
Fang
,
S. L.
, 1993, “
Computer Aided Tolerance Charting
,”
Int. J. Prod. Res.
0020-7543,
32
, pp.
1939
1954
.
19.
Ji
,
P.
, 1993, “
A Linear Programming Model for Tolerance Assignment in a Tolerance Chart
,”
Int. J. Prod. Res.
0020-7543,
31
(
3
), pp.
739
751
.
20.
Jeang
,
A.
, 1995, “
Economic Tolerance Design for Quality
,”
Qual. Reliab. Eng. Int
0748-8017,
11
(
2
), pp.
113
121
.
21.
Jeang
,
A.
, 2002, “
Optimal Parameter and Tolerance Design with a Complete Inspection Plan
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
(
2
), pp.
121
127
.
22.
Zhang
,
H.-C.
,
Huang
,
S. H.
, and
Mei
,
J.
, 1996, “
Operational Dimensioning and Tolerancing in Process Planning
,”
Int. J. Prod. Res.
0020-7543,
34
(
7
), pp.
1841
1858
.
23.
Zhang
,
H.-C.
, and
Lin
,
E.
, 1999, “
A Hybrid-Graph Approach for Automated Setup Planning in CAPP
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
, pp.
89
100
.
24.
Jeang
,
A.
, and
Chang
,
C.-L.
, 2002, “
Concurrent Optimization of Parameter and Tolerance Design via Computer Simulation and Statistical Method
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
, pp.
432
441
.
25.
Zhang
,
G.
, 1997, “
Simultaneous Tolerancing for Design and Manufacturing
,”
Advanced Tolerancing Techniques
,
H. C.
Zhang
, ed.,
Wiley
, New York, pp.
207
231
.
26.
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
Simultaneous Tolerance Synthesis through Variation Propagation Modeling of Multistage Manufacturing Processes
,”
NAMRI/SME Transactions
,
31
, pp.
515
522
.
27.
Ermer
,
D. S.
, 1997, “
A Century of Optimizing Machining Operations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
817
822
.
28.
Kumar
,
S.
, and
Raman
,
S.
, 1992, “
Computer-aided Tolerancing: The Past, the Present and the Future
,”
J. Design Manuf. Autom.
1532-0375
2
, pp.
29
41
.
29.
Hong
,
Y. S.
, and
Chang
,
T.-C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
30.
Zhang
,
C.
,
Wang
,
H. P.
, and
Li
,
J. K.
, 1992, “
Simultaneous Optimization of Design and Manufacturing-Tolerances with Process (Machine) Selection
,”
CIRP Ann.
0007-8506,
41
(
1
), pp.
569
572
.
31.
Zhang
,
C.
, and
Wang
,
H. P.
, 1993, “
Optimal Process Sequence Selection and Manufacturing Tolerance Allocation
,”
J. Design Manuf. Autom.
1532-0375,
3
, pp.
135
146
.
32.
Yeo
,
S. H.
,
Hgoi
,
B. K. A.
, and
Chen
,
H.
, 1996, “
A Cost-Tolerance Model for Process Sequence Optimization
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
12
, pp.
423
431
.
33.
Ming
,
X. G.
, and
Mak
,
K. L.
, 2001, “
Intelligent Approaches to Tolerance Allocation and Manufacturing Operations Selection in Process Planning
,”
J. Mater. Process. Technol.
0924-0136,
1117
, pp.
75
83
.
34.
Spotts
,
M. F.
, 1973, “
Allocation of Tolerances to Minimize Cost of Assembly
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
762
764
.
35.
Chase
,
K. H.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Haugland
,
L. F.
, 1990, “
Least Cost Tolerance Allocation for Mechanical Assemblies with Automated Process Selection
,”
Manuf. Rev.
0896-1611,
3
(
1
), pp.
49
59
.
36.
Wu
,
Z.
,
Elmaraghy
,
W. H.
, and
Elmaraghy
,
H. A.
, 1988, “
Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,”
Manuf. Rev.
0896-1611,
1
, pp.
168
179
.
37.
Dieter
,
G. E.
, 1983,
Engineering Design: A Materials and Processing Approach
,
McGraw-Hill
, New York.
38.
Shirai
,
E.
, 1982,
The Metal Cutting and Grinding Processes
(in Chinese, translated by X. Gao, and D. Liu),
Machinery Industry Press
, Beijing.
39.
Meng
,
S.
, ed., 1996,
Handbook of Metal Cutting Processes
,
Machinery Industry Press
, Beijing.
40.
Taguchi
,
G.
,
Elsayed
,
E. A.
, and
Hsiang
,
T.
, 1989,
Quality Engineering in Production Systems
,
McGraw-Hill
, New York.
41.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Application of Machining with Abrasives
,
Ellis Hzrwood Limited
, Chichester.
42.
Zhao
,
R.
, 1992,
Handbook for Machinists
,
Shanghai Science and Technology Press
, Shanghai.
43.
Zhang
,
C.
, and
Wang
,
H. P.
, 1993, “
Integrated Tolerance Optimization with Simulated Annealing
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
8
, pp.
167
174
.
44.
Ignizio
,
J. P.
, and
Cavalier
,
T. M.
, 1994,
Linear Programming
,
Prentice-Hall
, New Jersey.
45.
Zimmermann
,
H. J.
, 1978, “
Fuzzy Programming and Linear Programming with Several Objective Functions
,”
Fuzzy Sets Syst.
0165-0114,
1
, pp.
45
55
.
46.
Diplaris
,
S. C.
, and
Sfantsikopoulos
,
M. M.
, 2000, “
Cost-Tolerance Function: A New Approach for Cost Optimum Machining Accuracy
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
, pp.
32
38
.
47.
Feyzan
,
A.
, and
Zulal
,
G.
, 2001, “
An Application of Fuzzy Goal Programming to a Multiobjective Project Network Problem
,”
Fuzzy Sets Syst.
0165-0114,
119
, pp.
49
58
.
48.
Masatoshi
,
S.
, and
Ryo
,
Kubota
, 2000, “
Fuzzy Programming for Multiobjective Job Shop Scheduling with Fuzzy Processing Time and Fuzzy Duedate through Genetic Algorithms
,”
Eur. J. Oper. Res.
0377-2217,
120
, pp.
393
407
.
You do not currently have access to this content.