The aim of the present work is to extend the applicability of Oxley’s analysis of machining to a broader class of materials beyond the carbon steels used by Oxley and co-workers. The Johnson-Cook material model, history dependent power law material model and the Mechanical Threshold Stress (MTS) model are used to represent the mechanical properties of the material being machined as a function of strain, strain rate and temperature. A few changes are introduced into Oxley’s analysis to improve the consistency between the various assumptions. A new approach has been introduced to calculate the pressure variation along the alpha slip lines in the primary shear zone including the effects of both the strain gradient and the thermal gradient along the beta lines. This approach also has the added advantage of ensuring force equilibrium of the primary shear zone in a macroscopic sense. The temperature at the middle of the primary shear zone is calculated by integrating the plastic work thereby eliminating the unknown constant η. Rather than calculating the shear force from the material properties corresponding to the strain, strain rate and temperature of the material at the middle of the shear zone, the shear force is calculated in a consistent manner using the energy dissipated in the primary shear zone. The thickness of the primary and secondary shear zones, the heat partition at the primary shear zone, the temperature distribution along the tool-chip interface and the shear plane angle are all calculated using Oxley’s original approach. The only constant used to fine tune the model is the ratio of the average temperature to the maximum temperature at the tool-chip interface (ψ). The performance of the model has been studied by comparing its predictions with experimental data for 1020 and 1045 steels, for aluminum alloys 2024-T3, 6061-T6 and 6082-T6, and for copper. It is found that the model accurately reproduces the dependence of the cutting forces and chip thickness as a function of undeformed chip thickness and cutting speed and accurately estimates the temperature in the primary and secondary shear zones.
Skip Nav Destination
e-mail: vis.madhavan@Wichita.edu
Article navigation
November 2003
Technical Papers
Extension of Oxley’s Analysis of Machining to Use Different Material Models
Amir H. Adibi-Sedeh,
Amir H. Adibi-Sedeh
College of Engineering, Wichita State University, Wichita, KS 67260-0035
Search for other works by this author on:
Vis Madhavan,
e-mail: vis.madhavan@Wichita.edu
Vis Madhavan
College of Engineering, Wichita State University, Wichita, KS 67260-0035
Search for other works by this author on:
Behnam Bahr
Behnam Bahr
College of Engineering, Wichita State University, Wichita, KS 67260-0035
Search for other works by this author on:
Amir H. Adibi-Sedeh
College of Engineering, Wichita State University, Wichita, KS 67260-0035
Vis Madhavan
College of Engineering, Wichita State University, Wichita, KS 67260-0035
e-mail: vis.madhavan@Wichita.edu
Behnam Bahr
College of Engineering, Wichita State University, Wichita, KS 67260-0035
Contributed by the Manufacturing Engineering Division for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received March 2002; Revised June 2003. Associate Editor: Y. Shin.
J. Manuf. Sci. Eng. Nov 2003, 125(4): 656-666 (11 pages)
Published Online: November 11, 2003
Article history
Received:
March 1, 2002
Revised:
June 1, 2003
Online:
November 11, 2003
Citation
Adibi-Sedeh , A. H., Madhavan, V., and Bahr, B. (November 11, 2003). "Extension of Oxley’s Analysis of Machining to Use Different Material Models ." ASME. J. Manuf. Sci. Eng. November 2003; 125(4): 656–666. https://doi.org/10.1115/1.1617287
Download citation file:
Get Email Alerts
Characterization of Resistance-Welded Hybrid Sandwich Sheets With Additively Manufactured Core Structure
J. Manuf. Sci. Eng (November 2024)
Effect of Shear Localization on Surface Residual Stress Distribution in Machining of Waspaloy
J. Manuf. Sci. Eng (November 2024)
Localized Manipulation of Martensite Transformation in Double-Sided Incremental Forming by Varying the Deformation Path
J. Manuf. Sci. Eng (November 2024)
In Situ Monitoring and Recognition of Printing Quality in Electrohydrodynamic Inkjet Printing via Machine Learning
J. Manuf. Sci. Eng (November 2024)
Related Articles
The Effect of Preheating of Work Material on Chatter During End Milling of Medium Carbon Steel Performed on a Vertical Machining Center (VMC)
J. Manuf. Sci. Eng (November,2003)
The Effect of Chip Adsorption on Selective Depletion From a Multi-Component Synthetic Metalworking Fluid
J. Manuf. Sci. Eng (November,2003)
Precision Laser Deburring
J. Manuf. Sci. Eng (November,2001)
Mechanics of Machining With Chamfered Tools
J. Manuf. Sci. Eng (November,2000)
Related Proceedings Papers
Related Chapters
Modeling of Cutting Force in Vibration-Assisted Machining
Vibration Assisted Machining: Theory, Modelling and Applications
Cutting and Machining
Fabrication of Metallic Pressure Vessels
How the Worm Gear Developed through Time
Design and Application of the Worm Gear