Gear Hobbing is a complex gear manufacturing method, possessing great industrial significance. The convoluted geometry of the cutting tools brings on modeling problems and is the main reason for the almost exclusive application of HSS as cutting material. However, despite its complicated kinematics, gear hobbing is sufficiently described by well-established software tools, which were presented in the first part of the present paper. Experimental investigations exhibited the cutting performance of cemented carbide cutting teeth, which were expected to be potential alternatives for massive hob production. In these cutting experiments, hardmetal tools exhibited in several cases early and unexpected brittle failures, which were interpreted by the FRSFEM model in the first part of the paper. This analysis indicated that the occurring dynamic stresses are the reason for the observed fatigue failures on the cemented carbide tools. The occurring stresses are highly dependent on the selection of cutting parameters and on the tool geometry. Therefore, the proper selection of the cutting data may prevent the early tool failures, as the dominant parameters for tool wear, allowing it to be worn out by the conventional abrasive mechanisms. Thus, the doubtless dominance of cemented carbide over the HSS tools, may be rendered. The present work illustrates a parametric analysis, which describes quantitatively the effect of various cutting and technological parameters on the stress level occurring in gear hobbing, with cemented carbide cutting teeth. Hereby, the optimization of the tool life is enabled, allowing the maximum exploitation of modern gear hobbing machine tools. Optimized gear hobbing with cemented carbide tools may be used, in order to introduce higher cutting speeds in massive gear production.

1.
Bouzakis, K. D., 1980, “Konzept und technologishe Grundlagen zur automatisierten Erstellung optimaler Bearbeitungsdaten beim Waelzfraesen,” Habilitation, TH Aachen.
2.
Bouzakis
,
K. D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 1: Digitalrechnerprogramm FRDYN
,”
VDI-Ber.
,
121
(
19
), pp.
943
950
.
3.
Bouzakis
,
K. D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 2: Einfluesse technologischer Parameter der Werkzeuggeometrie und der Werkradgeometrie
,”
VDI-Ber.
,
121
(
20
), pp.
1016
1026
.
4.
Gutman, P., 1988, “Zerspankraftberechnung beim Waelzfraesen,” Ph.d. thesis, TH Aachen.
5.
Bouzakis
,
K. D.
, and
Methenitis
,
G.
,
1985
, “
Determination of the Values of the Technological Parameters Which are Used to Describe the Time Course Force Components in Milling
,”
CIRP Ann.
,
34
, pp.
141
144
.
6.
Shaw, M. C., 1989, Metal Cutting Principles, Oxford Science Publications.
7.
Sulzer, G., 1971, “Leistungssteigerung bei der Zylinderradherstellung durch genaue Erfassung der Zerspankinematik,” Ph.d. thesis, TH Aachen.
8.
Antoniadis, A., 1989, “Determination of the Impact Tool Stresses During Gear Hobbing and Determination of Cutting Forces During Hobbing of Hardened Gears,” Ph.d. thesis, Aristoteles University of Thessaloniki.
9.
Bouzakis
,
K. D.
, and
Antoniadis
,
A.
,
1993
, “
Berechnung der mechanischen Werkzeug spannungen beim Hartmetall-Waelzfraesen
,”
VDI-Ber.
,
135
, pp.
83
88
.
10.
Venohr, G., 1985, “Beitrag zum Einsatz von hartmetall Werkzeugen beim Waelzfraesen,” Ph.d. thesis, TH Aachen.
11.
Joppa, K., 1977, “Leistungssteigerung beim Waelzfraesen mit Schnellarbeitsstahl durch Analyze, Beurteilung und Beinflussung des Zerspanprozesses,” Ph.d. thesis, TH Aachen.
You do not currently have access to this content.