Gear hobbing is a highly utilized flexible manufacturing process for massive production of external gears. However, the complex geometry of cutting hobs is responsible for the almost exclusive utilization of high-speed steel (HSS) as cutting tool material. The limited cutting performance of HSS, even coated HSS, restricts the application of high cutting speeds and restricts the full exploitation of modern CNC hobbing machine tools. The application of cemented carbide tools was considered as a potential alternative to modern production requirements. In former investigations an experimental variation of gear hobbing, the so-called fly hobbing was applied, in order to specify the cutting performance of cemented carbide tools in gear production. These thorough experiments indicated that cracks, which were not expected, might occur in specific cutting cases, leading to the early failure of the entire cutting tool. In order to interpret computationally the reasons for these failures, an FEM simulation of the cutting process was developed, supported by advanced software tools able to determine the chip formation and the cutting forces during gear hobbing. The computational results explain sufficiently the failure mechanisms and they are quite in line with the experimental findings. The first part of this paper applies the verified parametric FEM model for various cutting cases, indicating the most risky cutting teeth with respect to their fatigue danger. In a step forward, the second part of the paper illustrates the effect of various technological and geometric parameters to the expected tool life. Therefore, the optimization of the cutting process is enabled, through the proper selection of cutting parameters, which can eliminate the failure danger of cemented carbide cutting tools, thus achieving satisfactory cost effectiveness.

1.
Sulzer, G., 1971, “Leistungssteigerung bei der Zylinderradherstellung durch genaue Erfassung der Zerspankinematik,” Ph.d. thesis, TH Aachen.
2.
Venohr, G., 1985, “Beitrag zum Einsatz von hartmetall Werkzeugen beim Waelzfraesen,” Ph.d. thesis, TH Aachen.
3.
Bouzakis
,
K.
, and
Koenig
,
W.
,
1981
, “
Process Models for the Incorporation of Gears Hobbing into an Information Center for Machining Data
,”
CIRP Ann.
,
30
, pp.
77
82
.
4.
Bouzakis
,
K. D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 1: Digitalrechnerprogramm FRDYN
,”
VDI-Ber.
,
121
(
19
), pp.
943
950
.
5.
Bouzakis
,
K. D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 2: Einfluesse technologischer Parameter der Werkzeuggeometrie und der Werkradgeometrie
,”
VDI-Ber.
,
121
(
20
), pp.
1016
1026
.
6.
Antoniadis, A., 1989, “Determination of the Impact Tool Stresses During Gear Hobbing and Determination of Cutting Forces During Hobbing of Hardened Gears,” Ph.d. thesis, Aristoteles University of Thessaloniki.
7.
Bouzakis
,
K. D.
, and
Antoniadis
,
A.
,
1993
, “
Berechnung der mechanischen Werkzeug spannungen beim Hartmetall-Waelzfraesen
,”
VDI-Ber.
,
135
, pp.
83
88
.
8.
Joppa, K., 1977, “Leistungssteigerung beim Waelzfraesen mit Schnellarbeitsstahl durch Analyze, Beurteilung und Beinflussung des Zerspanprozesses,” Ph.d. thesis, TH Aachen.
9.
Tondorf, J., 1978, “Erhoehung der Fertigungsgenauigkeit beim Waelzfraesen durch systematische Vermeidung von Aufbauschneiden,” Ph.d. thesis, TH Aachen.
10.
Bouzakis, K. D., et al., 1998, “Determination of Tool Life Time in Gear Hobbing, to Increase the Productivity and to Reduce the Manufacturing Costs,” Final report of PAVE project BE411, General Secretariat for Research and Technology, Ministry for Industry and Development of Greece.
11.
Bouzakis
,
K. D.
, and
Antoniadis
,
A.
,
1995
, “
Optimizing Tools Shift in Gear Hobbing
,”
CIRP Ann.
,
44
, pp.
75
79
.
12.
Bouzakis, K., Kompogiannis, S., Antoniadis, A., and Vidakis, N., 1999, “Modeling of Gear Hobbing—Part I: Cutting Simulation and Tool Wear Prediction Models,” Proc. ASME International Mechanical Engineering Congress and Exposition. Symposium on Material Behavior in Machining, J. W. Sutherland et al., eds., Nashville, Tennessee, MED 10, pp. 253–259.
13.
Bouzakis, K., Kompogiannis, S., Antoniadis, A., and Vidakis, N., 1999, “Modeling of Gear Hobbing—Part II: A Computer Supported Experimental-Analytical Determination of the Wear Progress to Optimize the Tool Life Time,” Proc. ASME International Mechanical Engineering Congress and Exposition. Symposium on Material Behavior in Machining, J. W. Sutherland et al., eds., Nashville, Tennessee, MED 10, pp. 261–269.
14.
Gutman, P., 1988, “Zerspankraftberechnung beim Waelzfraesen,” Ph.d. thesis, TH Aachen.
15.
Bouzakis, K. D., 1980, “Konzept und technologishe Grundlagen zur automatisierten Erstellung optimaler Bearbeitungsdaten beim Waelzfraesen,” Habilitation, TH Aachen.
16.
Bouzakis
,
K. D.
,
1980
, “
Mathematische Beschreibung des Verlaufes des Werkzeugverschleißes beim Waelzfraezen. Teil 1: Untersuchungsmethoden und Kenngroeßen zur Erfassung des Werkzeugverschleißes in den einzelnen Waelzstellungen,” VDI-Z
,
VDI-Ber.
,
122
(
20
), pp.
857
868
.
17.
Bouzakis
,
K. D.
,
1980
, “
Mathematische Beschreibung des Verlaufes des Werkzeug-verschleißes beim Waelzfraezen. Teil 2: Berechnung der Verschleißentwichlung in den einzelnen Waelzstellungen und beim Shiften; Programmkette Waelzfraeserverschleiß” VDI-Z
,
VDI-Ber.
,
122
(
21
), pp.
951
965
.
18.
Bouzakis, K. D, Vidakis N., and Kompogiannis S., 1998, “The Wear Mechanism of Coatings in Fly Hobbing,” Proc. of 9th DAAAM, Cluj-Napoca, pp. 61–62.
19.
DIN 3972, 1992, “Bezugsprofile von Verzahnwerkzeugen fuer Evolventen-Verzahnungen nach DIN 867,” Taschenbuch 106, Beuth Verlag.
20.
Bouzakis
,
K. D.
, and
Antoniadis
,
A.
,
1988
, “
Optimal Selection of Machining Data in Gear Hobbing Regarding the Tool Mechanical Stresses Occurring During the Cutting Process
,”
CIRP Ann.
,
37
, pp.
109
112
.
21.
Brooks, K., 1987, Word Directory and Handbook of Hardmetals, 4th edition, International Carbide Data.
22.
Bouzakis
,
K. D.
, and
Vidakis
,
N.
,
1997
, “
Effect of the Mechanical Stresses Developed During Gear Hobbing on the Fatigue Failure of Tool Coatings
,”
Int. Jour. Manufacturing Science & Production
,
1-1
, pp.
51
58
.
23.
Komvopoulos
,
K.
, 1989, “Elastic-Plastic Finite Element Analysis of Indented Layered Media,” Trans. ASME, 111.
24.
Niemann, G., and Winter, H., 1995, Maschinenelemente, Band II, Springer Verlag.
You do not currently have access to this content.