This paper addresses the problem of synthesizing robust optimal clamping schemes on three-dimensional parts with planar faces, with and without friction. Given a work part with a pre-defined deterministic 3-2-1 location scheme, a set of polygonal convex regions on its faces are defined as areas of admissible clamp positions. A known set of external disturbing wrenches is also given. The frictionless case is considered first, and a new linear program is formulated to provide clamp locations that minimize the maximum clamping force. A transformation of the solution is presented that permits the extraction of both, the optimal positions of the clamps and the magnitude of the corresponding maximum clamping force. Friction is introduced next, and a linear program is presented that minimizes the maximum normal clamping force. We also extend the earlier formulations to support the case of frictionless clamping contacts on cylindrical faces. The result is a nonlinear (but convex) optimization problem that can be easily solved. Finally, we discuss a linear algebraic technique to find the directions, and associated relative motion rates, along which the clamps can be moved while maintaining the clamping forces constant. These lines of constant clamping force, as we name them, identify an equivalence set of clamping schemes (such that the maximum clamping force, given a set of disturbing wrenches, stays invariant).

1.
Hazen
,
F. B.
, and
Wright
,
P. K.
,
1990
, “
Workholding Automation: Innovation in Analysis, Design and Planning
,”
Manufacturing Review
,
3
(
4
), pp.
224
237
.
2.
Asada
,
H.
, and
By
,
B.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly with Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
1
(
2
), pp.
86
94
.
3.
Reuleaux, F., 1963, The Kinematics of Machinery, Dover, New York.
4.
Somov
,
P.
,
1900
, “
Uber Gebiete von Schraubengeschwindigkeiten eines Ko¨rpers bei verschiedener Zahl von Stu¨tzfla¨chen
,”
Zeitschrift fu¨r Mathematik und Physik
,
45
, pp.
245
306
.
5.
Somov
,
P.
,
1897
, “
Uber Gebiete von Schraubengeschwindigkeiten eines Ko¨rpers bei verschiedener Zahl von Stu¨tzfla¨chen
,”
Zeitschrift fu¨r Mathematik und Physik
,
42
, pp.
133
153
, pp. 161–182.
6.
Lakshminarayana, K., 1978, “Mechanics of Form Closure,” ASME Technical Paper 78-DET-32.
7.
Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press.
8.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford.
9.
Ohwovoriole
,
M. S.
,
1981
, “
An Extension of Screw Theory
,”
ASME J. Mech. Des.
,
103
, pp.
725
735
.
10.
Mishra
,
B.
,
Schwartz
,
J. T.
, and
Sharir
,
M.
,
1987
, “
On the Existence and Synthesis of Multifinger Positive Grips
,”
Algorithmica
,
2
, pp.
541
558
.
11.
Markenscoff
,
X.
,
Ni
,
L.
, and
Papadimitriou
,
C. H.
,
1990
, “
The Geometry of Grasping
,”
Int. J. Robot. Res.
,
9
(
1
), pp.
61
74
.
12.
Chou
,
Y-C.
,
Chandru
,
V.
, and
Barash
,
M. M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng. Ind.
,
111
, pp.
209
306
.
13.
Bausch, J., and Youcef-Toumi, K., 1990, “Kinematic Methods for Automated Fixture Reconfiguration Planning,” IEEE International Conference on Robotics and Automation, pp. 1936–1401.
14.
De Meter
,
E. C.
,
1994
, “
Restraint Analysis of Fixtures Which Rely on Surface Contact
,”
ASME J. Eng. Ind.
,
116
, pp.
207
215
.
15.
Sayeed
,
Q. A.
, and
De Meter
,
E. C.
,
1994
, “
Machining Fixture Design and Analysis Software
,”
Int. J. Prod. Res.
32
(
7
), pp.
1655
1674
.
16.
De Meter
,
E. C.
,
1993
, “
Restraint Analysis of Assembly Work Carriers
,”
Rob. Comput.-Integr. Manufact.
,
10
, pp.
257
265
.
17.
Roth
,
B.
, and
Kerr
,
J.
,
1986
, “
Analysis of Multifingered Hands
,”
Int. J. Robot. Res.
,
4
(
4
), pp.
3
17
.
18.
De Meter, E. C., 1993, “Selection of Fixture Configuration for the Maximization of Mechanical Leverage,” Manufacturing Science and Engineering, PED-Vol. 64, ASME 1993, pp. 491–506.
19.
Lee
,
S. H.
, and
Cutkosky
,
M. R.
,
1991
, “
Fixture Planning with Friction
,”
Trans. ASME
,
113
, pp.
320
327
.
20.
Lee
,
S. H.
, and
Cho
,
K. K.
,
1994
, “
Approaches in Fixture Planning with Friction
,”
CIRP Ann.
,
43
(
1
), pp.
331
335
.
21.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding with Dry Friction, Part 1, Limit Surface and Moment Function
,”
Wear
,
143
, pp.
307
330
.
22.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding with Dry Friction, Part 2, Dynamics of Motion
,”
Wear
,
143
, pp.
331
352
.
23.
Xiuwen
,
G.
,
Fuh
,
J. Y. H.
, and
Nee
,
A. Y. C.
,
1996
, “
Modeling of Frictional Elastic Fixture-Workpiece System for Improving Location Accuracy
,”
IIE Transactions
,
28
, pp.
821
827
.
24.
Lee, J. D., and Haynes, L. S., 1986, “Finite Element Analysis of Flexible Fixturing Systems,” Proceedings ASME Japan-USA Symposium on Flexible Automation, pp. 579–584.
25.
Menassa, R. J., and DeVries, W. R., 1988, “Optimization Methods Applied to Selecting Support Points in Fixture Design,” Proceedings ASME Japan-USA Symposium on Flexible Automation, pp. 475–482.
You do not currently have access to this content.