Traditional regenerative stability theory predicts a set of optimally stable spindle speeds at integer fractions of the natural frequency of the most flexible mode of the system. The assumptions of this theory become invalid for highly interrupted machining, where the ratio of time spent cutting to not cutting (denoted ρ) is small. This paper proposes a new stability theory for interrupted machining that predicts a doubling in the number of optimally stable speeds as the value of ρ becomes small. The results of the theory are supported by numerical simulation and experiment. It is anticipated that the theory will be relevant for choosing optimal machining parameters in high-speed peripheral milling operations where the radial depth of cut is only a small fraction of the tool diameter.

1.
Tlusty, J., and Polacek, M., 1957, “Beispeile der Behandlung der selbsterregten Schwingugnen der Werkzeugmaschinen,” Drittes Forschungs- und Konstruktionskoloquium Werkzeugmaschinen und Betriebsweissenschaft (3. FoKoMa), Vogel-Verlag, Coburg.
2.
Tlusty, J., and Polocek, M., 1963, “The Stability of the Machine-Tool Against Self-Excited Vibration in Machining,” Proceedings of the International Research in Production Engineering, Pittsburgh, pp. 465, ASME New York.
3.
Tlusty
,
J.
, and
Ismail
,
F.
,
1983
, “
Special Aspects of Chatter in Milling
,”
ASME J. Vib., Acoust., Stress Reliab. Des.
105
, pp.
24
32
.
4.
Tobias
,
S. A.
, and
Fishwick
,
W.
,
1958
, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
Transactions of the ASME
,
80
, pp.
1079
1088
.
5.
Tobias, S. A., 1965, Machine-tool Vibration, Blackie and Sons Ltd., Glasgow, Scotland.
6.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A General Formulation of the Milling Process Equation
,”
ASME J. Eng. Ind.
,
90
, pp.
317
325
.
7.
Shridar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for the General Milling Process
,”
ASME J. Eng. Ind.
,
90
, pp.
330
334
.
8.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for Prediction of Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
, pp.
1
8
.
9.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling, Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
22
30
.
10.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling, Part II: Applications to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
31
36
.
11.
Corpus, W. T., and Endres, W. J., 2000, “A Higher-Order Solution for the Added Stability Lobes in Intermittent Machining,” ASME J. Manuf. Sci. Eng.
12.
Insberger, T., and Stepan, G., 2000, “Vibration Frequencies in High-Speed Milling Processes,” submitted to the Journal of Manufacturing Science and Engineering, ASME J. Manuf. Sci. Eng.
13.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J. R.
, and
Burns
,
T. J.
,
2000
, “
The Stability of Low Radial Immersion Milling
,”
CIRP Ann.
,
49
(
1
), pp.
37
40
.
14.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J.
,
Schaut
,
A. J.
, and
Bryan
,
J.
,
1998
, “
On the Dynamics of High-Speed Milling With Long Slender Endmills
,”
CIRP Ann.
,
47
(
1
), pp.
55
60
.
15.
Moon, F. C., 1992, Chaotic and Fractal Dynamics, John Wiley and Sons, Inc., New York, New York.
16.
Devaney, R. L., 1987, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, Inc., New York, New York.
You do not currently have access to this content.