In high speed machining of hard materials, tools with chamfered edge and materials resistant to diffusion wear are commonly used. In this paper, the influence of cutting edge geometry on the chip removal process is studied through numerical simulation of cutting with sharp, chamfered or blunt edges and with carbide and CBN tools. The analysis is based on the use of ALE finite element method for continuous chip formation process. Simulations include cutting with tools of different chamfer angles and cutting speeds. The study shows that a region of trapped material zone is formed under the chamfer and acts as the effective cutting edge of the tool, in accordance with experimental observations. While the chip formation process is not significantly affected by the presence of the chamfer, the cutting forces are increased. The effect of cutting speed on the process is also studied.

1.
Altan, T., Fallbohmer, P., Rodrigues, C. A., and Ozel, T., 1998, “High Speed Cutting of Cast Iron and Alloy Steels—State of Research,” Proceedings of CIRP-VDI Conf. on High Performance Tools, Dusseldorf, Germany, pp. 309–330.
2.
Armarego, E. J. A., 1993, Material Removal Processes—An Intermediate Course, University of Melbourne, Australia.
3.
Arsecularatne
,
J. A.
,
1997
, “
On Tool-Chip Interface Stress Distributions, Ploughing Force and Size Effect in Machining
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
885
899
.
4.
Waldorf, D. J., DeVor, R. E., and Kapoor, S. G., 1997, “A Slip-line Field for Ploughing During Orthogonal Cutting,” Proceedings of ASME Int. Mechanical Engineering Congress and Exposition, MED 6-1, pp. 121–128.
5.
Stevenson
,
R.
, and
Stephenson
,
D. A.
,
1995
, “
The Mechanical Behavior of Zinc During Machining
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
172
178
.
6.
Elanayar
,
S.
, and
Shin
,
Y. C.
,
1996
, “
Modeling of Tool Forces for Worn Tools: Flank Wear Effects
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
359
366
.
7.
Montgomery
,
D.
, and
Altintas
,
Y.
,
1991
, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
ASME J. Ind.
,
113
, pp.
160
168
.
8.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1999
, “
An Evaluation of Ploughing Models for Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
550
558
.
9.
Hirao
,
M.
,
Tlusty
,
R.
,
Sowerby
,
R.
, and
Chandra
,
G.
,
1982
, “
Chip Formation with Chamfered Tools
,”
ASME J. Ind.
,
104
, pp.
339
342
.
10.
Zhang
,
H. T.
,
Liu
,
P. D.
, and
Hu
,
R. S.
,
1991
, “
A Three Zone Model and Solution of Shear Angle in Orthogonal Machining
,”
Wear
,
143
, pp.
29
43
.
11.
Ren
,
H.
, and
Altintas
,
Y.
,
2000
, “
Mechanics of Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
650
659
.
12.
Carroll
,
J. T.
, and
Strenkowski
,
J. S.
,
1988
, “
Finite Element Models of Orthogonal Cutting With Application to Single Point Diamond Turning
,”
Int. J. Mech. Sci.
,
30
, pp.
899
920
.
13.
Lin
,
Z. C.
, and
Lin
,
S. Y.
,
1992
, “
A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
218
226
.
14.
Huang
,
J. M.
, and
Black
,
J. T.
,
1996
, “
An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
545
554
.
15.
Movahhedy
,
M. R.
,
Gadala
,
M. S.
, and
Altintas
,
Y.
,
2000
, “
Simulation of Orthogonal Metal Cutting Process Using Arbitrary Lagrangian-Eulerian Finite Element Method
,”
J. Mater. Process. Technol.
,
103
, pp.
267
275
.
16.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modeling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
3675
3694
.
17.
Madhavan, V., Chandrasekar, S., and Farris, T. N., 1993, “Mechanistic Model of Machining as an Indentation Process,” Materials Issues in Machining III, D. A. Stephenson and R. Stevenson, Eds., The Mineral, Metals and Materials Society, pp. 187–209.
18.
Strenkowski
,
J. S.
, and
Moon
,
K. J.
,
1990
, “
Finite Element Prediction of Chip Geometry and Tool-Workpiece Temperature Distribution in Orthogonal Metal Cutting
,”
ASME J. Ind.
,
112
, pp.
313
318
.
19.
Kim
,
K. W.
, and
Sin
,
H.-C.
,
1996
, “
Development of a Thermo-Viscoplastic Cutting Model Using Finite Element Method
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
379
397
.
20.
Joyot
,
P.
,
Rakotomalala
,
R.
,
Pantale
,
O.
,
Touratier
,
M.
, and
Hakem
,
N.
,
1998
, “
A Numerical Simulation of Steady State Metal Cutting
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
212
, pp.
331
341
.
21.
Olovsson
,
L.
,
Nilsson
,
L.
, and
Simonsson
,
K.
,
1999
, “
An ALE Formulation for the Solution of Two-Dimensional Metal Cutting Problems
,”
Comput. Struct.
,
72
, pp.
497
507
.
22.
Movahhedy
,
M. R.
,
Gadala
,
M. S.
, and
Altintas
,
Y.
,
2000
, “
FE Modeling of Chip Formation in Orthogonal Metal Cutting Process: An ALE Approach
,”
Mach. Sci. Technol.
,
4
, pp.
15
47
.
23.
Gadala
,
M. S.
, and
Wang
,
J.
,
1998
, “
ALE Formulation and Its Application in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
167
, pp.
33
55
.
24.
Gadala
,
M. S.
,
Movahhedy
,
M. R.
, and
Wang
,
J.
,
2002
, “
On the Mesh Motion in ALE Simulation of Metal Forming Processes
,”
Finite Element in Analysis and Design
,
38
, pp.
435
459
.
25.
Engineering Research Center, Net Shape Manufacturing, Ohio State University, Private communication.
26.
Shatla, M., and Altan, T., 1998, “Use of Analytical Based Computer Modeling to Analyze 2-D and 3-D Turning and Face Milling Operations,” ERC/NSM Report No. HPM/ERC/NSM-98-R-028.
27.
Jacobson
,
S.
, and
Wallen
,
P.
,
1988
, “
A New Classification System for Dead Zone in Metal Cutting
,”
Int. J. Mach. Tools Manuf.
,
28
, pp.
529
538
.
28.
Oxley, P. L. B., 1989, Mechanics of Machining-An Analytical Approach to Assessing Machinability, Ellis-Horwood Limited.
You do not currently have access to this content.