Abstract

Wind energy harvesters are emerging as a viable alternative to standard, large horizontal-axis wind turbines. This study continues a recent investigation on the operational features of a torsional-flutter-based apparatus, proposed by the author to extract wind energy. The apparatus is composed of a non-deformable, flapping blade-airfoil. A nonlinear torsional spring mechanism, either simulated by a Duffing model or a hybrid Duffing–van der Pol model, installed at equally spaced supports, enables limit-cycle, post-critical vibration. To enhance the output power, stochastic resonance principles are invoked through a novel, negative stiffness mechanism that is coupled to the eddy current device for energy conversion. The output power is explored by numerically solving the stochastic differential equation of the model, accounting for incoming flow turbulence. Three main harvester types with variable configuration are examined; the chord length of the blade-airfoil, used for energy harvesting, varies between 0.5 and 1 m; the spanwise-length-to-chord aspect ratio is four. The flapping frequency varies between 0.10 and 0.25 Hz. The study demonstrates that exploitation of negative stiffness mechanism can improve the performance of the harvester.

References

1.
Priya
,
S.
, and
Inman
,
D. J.
,
2009
,
Energy Harvesting Technologies
,
Springer Science
,
New York
.
2.
Matsumoto
,
M.
,
Mizuno
,
K.
,
Okubo
,
K.
, and
Itô
,
Y.
,
2006
, “
Fundamental Study on the Efficiency of Power Generation System by Use of the Flutter Instability
,” Proc. 2006 ASME Pressure Vessels and Piping Division Conference, Vol. 9,
American Society of Mechanical Engineers
, pp.
277
286
, ASME Paper PVP2006-ICPVT11-93773.
3.
Pigolotti
,
L.
,
Mannini
,
C.
,
Bartoli
,
G.
, and
Thiele
,
K.
,
2017
, “
Critical and Post-critical Behaviour of Two-Degree-of-Freedom Flutter-Based Generators
,”
J. Sound Vib.
,
404
, pp.
116
140
.
4.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Design of Piezoaeroelastic Energy Harvesters
,”
Nonlinear Dyn.
,
68
(
4
), pp.
519
530
.
5.
Le
,
H.
,
Kwon
,
S.-D.
, and
Law
,
K.
,
2023
, “
Hybrid Energy Harvesting From Wind and Bridge Vibrations
,”
16th Int. Conference on Wind Engineering (ICWE2023)
,
Florence, Italy
,
Aug. 27–31
,
Abstract No. 34
.
6.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
7.
Singh
,
K.
,
Michelin
,
S.
, and
de Langre
,
E.
,
2012
, “
Energy Harvesting From Axial Fluid-Elastic Instabilities of a Cylinder
,”
J. Fluids Struct.
,
30
, pp.
159
172
.
8.
Eugeni
,
M.
,
Elahi
,
H.
,
Fune
,
F.
,
Lampani
,
L.
,
Mastroddi
,
F.
,
Romano
,
G. P.
, and
Gaudenzi
,
P.
,
2020
, “
Numerical and Experimental Investigation of Piezoelectric Energy Harvester Based on Flag-Flutter
,”
Aerosp. Sci. Technol.
,
97
, p.
105634
.
9.
Gkoumas
,
K.
,
Petrini
,
F.
, and
Bontempi
,
F.
,
2017
, “
Piezoelectric Vibration Energy Harvesting From Airflow in HVAC (Heating Ventilation and Air Conditioning) Systems
,”
Procedia Eng.
,
199
, pp.
3444
3449
.
10.
Petrini
,
F.
, and
Gkoumas
,
K.
,
2018
, “
Piezoelectric Energy Harvesting From Vortex Shedding and Galloping Induced Vibrations Inside HVAC Ducts
,”
Energy Build.
,
158
, pp.
371
383
.
11.
Young
,
J.
,
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
2014
, “
A Review of Progress and Challenges in Flapping Foil Power Generation
,”
Prog. Aerosp. Sci.
,
67
, pp.
2
28
.
12.
Caracoglia
,
L.
,
2018
, “
Modeling the Coupled Electro-mechanical Response of a Torsional-Flutter-Based Wind Harvester With a Focus on Energy Efficiency Examination
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
437
450
.
13.
Ahmadi
,
G.
,
1979
, “
An Oscillatory Wind Energy Converter
,”
Wind Eng.
,
3
, pp.
207
215
.
14.
Roohi
,
R.
,
Hosseini
,
R.
, and
Ahmadi
,
G.
,
2023
, “
Parametric Study of an H-Section Oscillatory Wind Energy Converter
,”
J. Ocean Eng.
,
270
, p.
113652
.
15.
Meimaris
,
A. T.
,
Kougioumtzoglou
,
I. A.
, and
Pantelous
,
A. A.
,
2019
, “
Approximate Analytical Solutions for a Class of Nonlinear Sstochastic Differential Equations
,”
Eur. J. Appl. Math.
,
30
(
5
), pp.
928
944
.
16.
Kwon
,
S.-D.
,
Park
,
J.
, and
Law
,
K.
,
2013
, “
Electromagnetic Energy Harvester With Repulsively Stacked Multilayer Magnets for Low Frequency Vibrations
,”
Smart Mater. Struct.
,
22
(
5
), p.
055007
.
17.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.
18.
Caracoglia
,
L.
,
2024
, “
Stochastic Performance of a Torsional-Flutter Harvester in Non-stationary, Turbulent Thunderstorm Outflows
,”
J. Fluids Struct.
,
124
, p.
104050
.
19.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley–VCH Verlag GmbH & Co. KGaA
,
Weinhein
.
20.
Grigoriu
,
M.
,
2002
,
Stochastic Calculus. Applications in Science and Engineering
,
Birkhäuser
,
Boston, MA
.
21.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1955
,
Aeroelasticity
,
Dover Publications Inc.
,
Mineola, NY
.
22.
Argentina
,
M.
, and
Mahadevan
,
L.
,
2005
, “
Fluid-Flow-Induced Flutter of a Flag
,”
Proc. Natl. Acad. Sci. USA
,
102
(
6
), pp.
1829
1834
.
23.
Jones
,
R. T.
,
1939
, “The Unsteady Lift of a Finite Wing,” Tech. Rep. NACA-TN-682, National Advisory Committee for Aeronautics, Washington, DC.
24.
Itô
,
K.
,
1951
,
On Stochastic Differential Equations
(
Memoirs of the American Mathematical Society
); Vol.
4
,
American Mathematical Society
,
Providence, RI
.
25.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Differential Equations
,”
Int. J. Eng. Sci.
,
3
, pp.
213
229
.
26.
Kloeden
,
P. E.
,
Platen
,
E.
, and
Schurz
,
H.
,
1994
,
Numerical Solution of Stochastic Differential Equations Through Computer Experiments
,
Springer-Verlag
,
Berlin-Heidelberg
.
27.
Xie
,
W.-C.
,
2005
, “
Monte Carlo Simulation of Moment Lyapunov Exponents
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
269
275
.
28.
Náprstek
,
J.
,
2001
, “
Stability Domains of Wind-Excited Random Nonlinear Systems Through Lyapunov Function
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
14–15
), pp.
1499
1512
.
29.
Pospíšil
,
S.
,
Náprstek
,
J.
, and
Hračov
,
S.
,
2006
, “
Stability Domains in Flow-Structure Interaction and Influence of Random Noises
,”
J. Wind Eng. Ind. Aerodyn.
,
94
(
11
), pp.
883
893
.
30.
Xie
,
W.-C.
,
2006
,
Dynamic Stability of Structures
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.