Abstract

Complexity of atmospheric pressure plasma jet dynamics poses a significant challenge for control design, and this letter presents a learning- and scenario-based model predictive control (ScMPC) method in the linear parameter-varying (LPV) framework to tackle this challenge. By leveraging artificial neural networks, an LPV state-space representation of the system dynamics is first learned. The mismatch between this model and real plant is then estimated using Bayesian neural networks, enabling scenario generation for ScMPC design. Soft constraints are imposed in the control design formulation to ensure the feasibility of the underlying optimization problem. Results from extensive simulations are used to compare the proposed framework with a benchmark linear time invariant (LTI)-based ScMPC, demonstrating superior performance in both reference tracking and thermal dose delivery. The proposed approach allows for accurate control of plasma jets while reducing conservatism inherent in either LTI-based approaches or other robust control methods.

References

1.
Laroussi
,
M.
,
Lu
,
X.
, and
Keidar
,
M.
,
2017
, “
Perspective: The Physics, Diagnostics, and Applications of Atmospheric Pressure Low Temperature Plasma Sources Used in Plasma Medicine
,”
J. Appl. Phys.
,
122
(
2
), p.
020901
.
2.
Fanelli
,
F.
, and
Fracassi
,
F.
,
2017
, “
Atmospheric Pressure Non-Equilibrium Plasma Jet Technology: General Features, Specificities and Applications in Surface Processing of Materials
,”
Surf. Coat. Technol.
,
322
, pp.
174
201
.
3.
Kumar
,
A.
,
Škoro
,
N.
,
Gernjak
,
W.
, and
Puač
,
N.
,
2021
, “
Cold Atmospheric Plasma Technology for Removal of Organic Micropollutants From Wastewater –A Review
,”
Eur. Phys. J. D
,
75
, pp.
1
26
.
4.
Gidon
,
D.
,
Graves
,
D. B.
, and
Mesbah
,
A.
,
2017
, “
Effective Dose Delivery in Atmospheric Pressure Plasma Jets for Plasma Medicine: A Model Predictive Control Approach
,”
Plasma Sourc. Sci. Technol.
,
26
(
8
), p.
085005
.
5.
Bonzanini
,
A. D.
,
Graves
,
D. B.
, and
Mesbah
,
A.
,
2021
, “
Learning-Based SMPC for Reference Tracking Under State-Dependent Uncertainty: An Application to Atmospheric Pressure Plasma Jets for Plasma Medicine
,”
IEEE Trans. Control Syst. Technol.
,
30
(
2
), pp.
611
624
.
6.
Bao
,
Y.
,
Chan
,
K. J.
,
Mesbah
,
A.
, and
Mohammadpour Velni
,
J.
,
2022
, “
Learning-Based Adaptive-Scenario-Tree Model Predictive Control With Probabilistic Safety Guarantees Using Bayesian Neural Networks
,”
2022 American Control Conference (ACC)
,
Atlanta, GA
,
June 8–10
, IEEE, pp.
3260
3265
.
7.
Mohammadpour
,
J.
, and
Scherer
,
C. W.
,
2012
,
Control of Linear Parameter Varying Systems With Applications
,
Springer Science & Business Media
,
New York
.
8.
Gidon
,
D.
,
Abbas
,
H. S.
,
Bonzanini
,
A. D.
,
Graves
,
D. B.
,
Mohammadpour Velni
,
J.
, and
Mesbah
,
A.
,
2021
, “
Data-Driven LPV Model Predictive Control of a Cold Atmospheric Plasma Jet for Biomaterials Processing
,”
Control. Eng. Pract.
,
109
, p.
104725
.
9.
Bao
,
Y.
, and
Mohammadpour Velni
,
J.
,
2022
, “
An Overview of Data-Driven Modeling and Learning-Based Control Design Methods for Nonlinear Systems in LPV Framework
,”
The 5th IFAC Workshop on Linear Variable Parameter Systems (LPVS)
,
Montreal, Canada
,
Sept. 27–30
.
10.
Bao
,
Y.
, and
Mohammadpour Velni
,
J.
,
2023
, “
A Hybrid Neural Network Approach for Adaptive Scenario-Based Model Predictive Control in the LPV Framework
,”
IEEE Control Syst. Lett.
,
7
, pp.
1921
1926
.
11.
Lin
,
P.
,
Zhang
,
J.
,
Nguyen
,
T.
,
Donnelly
,
V. M.
, and
Economou
,
D. J.
,
2020
, “
Numerical Simulation of an Atmospheric Pressure Plasma Jet With Coaxial Shielding Gas
,”
J. Phys. D: Appl. Phys.
,
54
(
7
), p.
075205
.
12.
Bao
,
Y.
,
Mohammadpour Velni
,
J.
,
Basina
,
A.
, and
Shahbakhti
,
M.
,
2020
, “
Identification of State-Space Linear Parameter-Varying Models Using Artificial Neural Networks
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
5286
5291
.
13.
de la Penad
,
D. M.
,
Bemporad
,
A.
, and
Alamo
,
T.
,
2005
, “
Stochastic Programming Applied to Model Predictive Control
,”
Proceedings of the 44th IEEE Conference on Decision and Control
,
Seville, Spain
,
Dec. 15
, IEEE, pp.
1361
1366
.
14.
Lucia
,
S.
,
Finkler
,
T.
, and
Engell
,
S.
,
2013
, “
Multi-stage Nonlinear Model Predictive Control Applied to a Semi-Batch Polymerization Reactor Under Uncertainty
,”
J. Process. Control.
,
23
(
9
), pp.
1306
1319
.
15.
Zhang
,
A.
, and
Morari
,
M.
,
1994
, “
Stability of Model Predictive Control With Soft Constraints
,”
Proceedings of 1994 33rd IEEE Conference on Decision and Control
,
Lake Buena Vista, FL
,
Dec. 14–16
, Vol. 2, IEEE, pp.
1018
1023
.
16.
Kerrigan
,
E. C.
, and
Maciejowski
,
J. M.
,
2000
, “
Soft Constraints and Exact Penalty Functions in Model Predictive Control
,”
UKACC Control 2000 Conference
,
Cambridge, UK
,
Sept. 4–7
, pp.
2319
2327
.
17.
Thombre
,
M.
,
Yu
,
Z. J.
,
Jäschke
,
J.
, and
Biegler
,
L. T.
,
2021
, “
Sensitivity-Assisted Multistage Nonlinear Model Predictive Control: Robustness, Stability and Computational Efficiency
,”
Comput. Chem. Eng.
,
148
, p.
107269
.
18.
Goodwin
,
G. C.
,
Østergaard
,
J.
,
Quevedo
,
D. E.
, and
Feuer
,
A.
,
2009
, “A Vector Quantization Approach to Scenario Generation for Stochastic NMPC,”
Nonlinear Model Predictive Control
,
Springer
,
Berlin, Heidelberg
, pp.
235
248
.
19.
Blundell
,
C.
,
Cornebise
,
J.
,
Kavukcuoglu
,
K.
, and
Wierstra
,
D.
,
2015
, “
Weight Uncertainty in Neural Network
,”
Proceedings of the 32nd International Conference on Machine Learning
,
Lille, France
,
July 7–9
, PMLR, pp.
1613
1622
.
20.
Hastie
,
T.
,
Tibshirani
,
R.
,
Friedman
,
J.
,
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
, “
Model Assessment and Selection
,” The Elements of Statistical Learning: Data Mining, Inference, and Prediction, pp.
219
259
.
21.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.
22.
Høyland
,
K.
, and
Wallace
,
S. W.
,
2001
, “
Generating Scenario Trees for Multistage Decision Problems
,”
Manage. Sci.
,
47
(
2
), pp.
295
307
.
23.
Gidon
,
D.
,
Curtis
,
B.
,
Paulson
,
J. A.
,
Graves
,
D. B.
, and
Mesbah
,
A.
,
2017
, “
Model-Based Feedback Control of a kHz-Excited Atmospheric Pressure Plasma Jet
,”
IEEE Trans. Radiat. Plasma Med. Sci.
,
2
(
2
), pp.
129
137
.
You do not currently have access to this content.