Graphical Abstract Figure
Issue Section:
Radiative Heat Transfer
Abstract
In this study, entropic analysis is combined with the detailed balance model to determine the maximum output power of thermoradiative (TR) cells, which are semiconductor devices that generate electric power from a heat source that emits photons to a cold reservoir. Previous studies used different models without addressing their interconnections and inherent assumptions. This work unifies these models by considering the modified Bose–Einstein distribution of photons and reveals the underlying relationship between different models. The findings provide useful insights on the application and optimization of emissive power generation devices for harvesting low-grade heat and space power generation.
Issue Section:
Radiative Heat Transfer
References
1.
Byrnes
, S. J.
, Blanchard
, R.
, and Capasso
, F.
, 2014
, “Harvesting Renewable Energy From Earth's Mid-Infrared Emissions
,” Proc. Natl. Acad. Sci. (PNAS)
, 111
(11
), pp. 3927
–3932
.10.1073/pnas.14020361112.
Tervo
, E. J.
, Bagherisereshki
, E.
, and Zhang
, Z. M.
, 2018
, “Near-Field Radiative Thermoelectric Energy Converters: A Review
,” Front. Energy
, 12
(1
), pp. 5
–21
.10.1007/s11708-017-0517-z3.
Zhao
, B.
, and Fan
, S.
, 2020
, “Chemical Potential of Photons and Its Implications for Controlling Radiative Heat Transfer
,” Annu. Rev. Heat Transfer
, 23
, pp. 397
–431
.10.1615/AnnualRevHeatTransfer.20200329344.
Strandberg
, R.
, 2015
, “Theoretical Efficiency Limits for Thermoradiative Energy Conversion
,” J. Appl. Phys.
, 117
(5
), p. 055105
.10.1063/1.49073925.
Santhanam
, P.
, and Fan
, S.
, 2016
, “Thermal-to-Electrical Energy Conversion by Diodes Under Negative Illumination
,” Phys. Rev. B
, 93
(16
), p. 161410(R)
.10.1103/PhysRevB.93.1614106.
Hsu
, W.-C.
, Tong
, J. K.
, Liao
, B.
, Huang
, Y.
, Boriskina
, S. V.
, and Chen
, G.
, 2016
, “Entropic and Near-Field Improvements of Thermoradiative Cells
,” Sci. Rep.
, 6
(1
), p. 34837
.10.1038/srep348377.
Lin
, C.
, Wang
, B.
, Teo
, K. H.
, and Zhang
, Z. M.
, 2017
, “Near-Field Enhancement of Thermoradiative Devices
,” J. Appl. Phys.
, 122
(14
), p. 143102
.10.1063/1.50070368.
Lin
, C.
, Wang
, B.
, Teo
, K. H.
, and Zhang
, Z. M.
, 2017
, “Performance Comparison Between Photovoltaic and Thermoradiative Devices
,” J. Appl. Phys.
, 122
(24
), p. 243103
.10.1063/1.50046519.
Zhang
, X.
, Ang
, Y. S.
, Chen
, J. C.
, and Ang
, L. K.
, 2019
, “Design of an InSb Thermoradiative System for Harvesting Low-Grade Waste Heat
,” Opt. Lett.
, 44
(13
), pp. 3354
–3357
.10.1364/OL.44.00335410.
Deppe
, T.
, and Munday
, J. N.
, 2020
, “Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling With Deep Space
,” ACS Photonics
, 7
(1
), pp. 1
–9
.10.1021/acsphotonics.9b0067911.
Wang
, B.
, Lin
, C.
, Teo
, K. H.
, and Zhang
, Z. M.
, 2017
, “Thermoradiative Device Enhanced by Near-Field Coupled Structures
,” J. Quant. Spectrosc. Radiat. Transfer
, 196
, pp. 10
–16
.10.1016/j.jqsrt.2017.03.03812.
Ghanekar
, A.
, Tian
, Y. P.
, Liu
, X. J.
, and Zheng
, Y.
, 2019
, “Performance Enhancement of Near-Field Thermoradiative Devices Using Hyperbolic Metamaterials
,” J. Photonics Energy
, 9
(3
), p. 032706
.10.1117/1.JPE.9.03270613.
Feng
, D.
, Ruan
, X.
, Yee
, S. K.
, and Zhang
, Z. M.
, 2022
, “Thermoradiative Devices Enabled by Hyperbolic Phonon Polaritons at Nanoscales
,” Nano Energy
, 103
(Part A
), p. 107831
.10.1016/j.nanoen.2022.10783114.
Ono
, M.
, Santhanam
, P.
, Li
, W.
, Zhao
, B.
, and Fan
, S.
, 2019
, “Experimental Demonstration of Energy Harvesting From the Sky Using the Negative Illumination Effect of a Semiconductor Photodiode
,” Appl. Phys. Lett.
, 114
(16
), p. 161102
.10.1063/1.508978315.
Wang
, J.
, Chen
, C. H.
, Bonner
, R.
, and Anderson
, W. G.
, 2019
, “Thermo-Radiative Cell—A New Waste Heat Recovery Technology for Space Power Applications
,” AIAA
Paper No. 2019-3977.10.2514/6.2019-397716.
Nielsen
, M. P.
, Pusch
, A.
, Sazzad
, M. H.
, Pearce
, P. M.
, Reece
, P. J.
, and Ekins-Daukes
, N. J.
, 2022
, “Thermoradiative Power Conversion From HgCdTe Photodiodes and Their Current–Voltage Characteristics
,” ACS Photonics
, 9
(5
), pp. 1535
–1540
.10.1021/acsphotonics.2c0022317.
Buddhiraju
, S.
, Santhanam
, P.
, and Fan
, S.
, 2018
, “Thermodynamic Limits of Energy Harvesting From Outgoing Thermal Radiation
,” Proc. Natl. Acad. Sci. (PNAS)
, 115
(16
), pp. E3609
–E3615
.10.1073/pnas.171759511518.
Shockley
, W.
, and Queisser
, H. J.
, 1961
, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
,” J. Appl. Phys.
, 32
(3
), pp. 510
–519
.10.1063/1.173603419.
Landsberg
, P. T.
, and Tonge
, G.
, 1980
, “Thermodynamic Energy Conversion Efficiencies
,” J. Appl. Phys.
, 51
(7
), pp. R1
–R20
.10.1063/1.32818720.
Zhang
, Z. M.
, 2020
, Nano/Microscale Heat Transfer
, 2nd ed., Springer Nature
, Cham, Switzerland
.21.
Zhang
, Z. M.
, and Basu
, S.
, 2007
, “Entropy Flow and Generation in Radiative Transfer Between Surfaces
,” Int. J. Heat Mass Transfer
, 50
(3–4
), pp. 702
–712
.10.1016/j.ijheatmasstransfer.2006.07.00922.
Würfel
, P.
, 1982
, “The Chemical Potential of Radiation
,” J. Phys. C: Solid State Phys.
, 15
, pp. 3967
–3985
.10.1088/0022-3719/15/18/01223.
Pusch
, A.
, Gordon
, J. M.
, Mellor
, A.
, Krich
, J. J.
, and Ekins-Daukes
, N. J.
, 2019
, “Fundamental Efficiency Bounds for the Conversion of a Radiative Heat Engine's Own Emission Into Work
,” Phys. Rev. Appl.
, 12
(6
), p. 064018
.10.1103/PhysRevApplied.12.06401824.
Fernández
, J. J.
, 2019
, “Theoretical Optimization of the Working Properties of Spatial Thermoradiative Cells Using the Carnot Efficiency
,” J. Appl. Phys.
, 125
(10
), p. 103101
.10.1063/1.507929525.
Fernández
, J. J.
, 2021
, “Analysis of Irreversible Thermodynamic Losses in Emissive-Energy Harvesters Based on Photon Beams
,” IEEE J. Photovolt.
, 11
, pp. 437
–441
.10.1109/JPHOTOV.2021.305315726.
Li
, J.
, and Chen
, L. G.
, 2021
, “Exergoeconomic Performance Optimization of the Space Thermoradiative Cell
,” Eur. Phys. J. Plus
, 136
, p. 644
.10.1140/epjp/s13360-021-01638-y27.
Martí
, A.
, and Araujo
, G. L.
, 1996
, “Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems
,” Sol. Energy Mater. Sol. Cells
, 43
(2
), pp. 203
–222
.10.1016/0927-0248(96)00015-328.
Green
, M.
, 2003
, Third Generation Photovoltaics: Advanced Solar Energy Conversion
, Springer-Verlag
, Berlin, Germany
.29.
Park
, Y.
, Zhao
, B.
, and Fan
, S.
, 2022
, “Reaching the Ultimate Efficiency of Solar Energy Harvesting With a Nonreciprocal Multijunction Solar Cell
,” Nano Lett.
, 22
(1
), pp. 448
–452
.10.1021/acs.nanolett.1c0428830.
Tervo
, E. J.
, Callahan
, W. A.
, Toberer
, E. S.
, Steiner
, M. A.
, and Ferguson
, A. J.
, 2020
, “Solar Thermoradiative-Photovoltaic Energy Conversion
,” Cell Rep. Phys. Sci.
, 1
(12
), p. 100258
.10.1016/j.xcrp.2020.10025831.
Fernández
, J. J.
, 2017
, “Thermoradiative Energy Conversion With Quasi-Fermi Level Variations
,” IEEE Trans. Electron Devices
, 64
, pp. 250
–255
.10.1109/TED.2016.262760532.
Ye
, Z. L.
, Peng
, W. L.
, Su
, S. H.
, and Chen
, J. C.
, 2018
, “Intermediate Band Thermoradiative Cells
,” IEEE Trans. Electron Devices
, 65
(12
), pp. 5428
–5433
.10.1109/TED.2018.287358133.
Feng
, D.
, Tervo
, E. J.
, Vasileska
, D.
, Yee
, S. K.
, Rohatgi
, A.
, and Zhang
, Z. M.
, 2021
, “Spatial Profiles of Photon Chemical Potential in Near-Field Thermophotovoltaic Cells
,” J. Appl. Phys.
, 129
(21
), p. 213101
.10.1063/5.004724134.
Li
, B.
, Cheng
, Q.
, Song
, J.
, Zhou
, K.
, Lu
, L.
, Luo
, Z.
, and Zhuo
, X.
, 2021
, “Thermodynamic Bounds of Work and Efficiency in Near-Field Thermoradiative Systems
,” Int. J. Heat Mass Transfer
, 180
, p. 121807
.10.1016/j.ijheatmasstransfer.2021.12180735.
Shi
, Y.
, Han
, S.
, and Fan
, S.
, 2017
, “Optical Circulation and Isolation Based on Indirect Photonic Transitions of Guided Resonance Modes
,” ACS Photonics
, 4
(7
), pp. 1639
–1645
.10.1021/acsphotonics.7b0042036.
Vurgaftman
, I.
, and Meyer
, J. R.
, 2023
, “Simple Model of Power Generation in Thermoradiative Devices Including Realistic Nonradiative Processes
,” APL Energy
, 1
(3
), p. 036111
.10.1063/5.018103637.
Shibuya
, H.
, Nagumo
, N.
, Kumagai
, K.
, and Sakurai
, A.
, 2022
, “Fundamental Study on Thermoradiative Energy Conversion for Space Applications
,” JSME J. Therm. Sci. Technol.
, 17
(2
), p. 22–00051.10.1299/jtst.22-00051Copyright © 2025 by ASME
You do not currently have access to this content.