Abstract

This work designs a Diamond-type triply periodic minimal surface (TPMS) structure that exhibits excellent thermomechanical properties in a gas turbine blade trailing edge to enhance thermal performance and improve heat transfer uniformity. Since the velocity and temperature distributions are altered in the rotating trailing edge channel, the flow and heat transfer characteristics of the baseline pin fin and Diamond TPMS models are numerically investigated at the Reynolds number of 10,000 and the rotation numbers of 0.0–0.28. Compared to the baseline model, the Diamond TPMS network significantly decreases recirculation flow at the inner wall, improving heat transfer, especially at the tip and outlet regions. Although the Diamond TPMS model incurs substantial pressure losses from 191% to 234%, it yields significantly higher overall heat transfer than the pin fins by 179%. Consequently, the thermal performance increased by 93.4%. The flow fluctuations due to the rotating effects are minor in the Diamond TPMS architecture, considerably reducing the differences in heat transfer between the leading and trailing walls. The differences in the wetted-area averaged Nusselt number of the baseline and Diamond TPMS models within the studied rotation numbers are 8.5–14.4% and about 8.5%, respectively. Moreover, the Diamond TPMS structure reduces the differences in heat transfer between the root and tip regions at the outlet by up to 80% compared to the pin fins. This improvement helps protect the trailing edge from thermal failure, thereby potentially prolonging the gas turbine blade's lifetime.

References

1.
Schiele
,
R.
, and
Wittig
,
S.
,
2000
, “
Gas Turbine Heat Transfer: Past and Future Challenges
,”
J. Propuls. Power
,
16
(
4
), pp.
583
589
.10.2514/2.5611
2.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer in the Trailing Region of Gas Turbines – A State-of-the-Art Review
,”
Appl. Therm. Eng.
,
199
, p.
117614
.10.1016/j.applthermaleng.2021.117614
3.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
.10.1155/2013/275653
4.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
85
113
.10.1016/j.cja.2020.12.035
5.
Massini
,
D.
,
Burberi
,
E.
,
Carcasci
,
C.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Armellini
,
A.
,
Casarsa
,
L.
, and
Furlani
,
L.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101902
.10.1115/1.4036576
6.
Burberi
,
E.
,
Massini
,
D.
,
Cocchi
,
L.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2017
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Numerical Investigation
,”
ASME J. Turbomach.
,
139
(
3
), p. 031005.10.1115/1.4034799
7.
Cocchi
,
L.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Heat Transfer Measurements in Leading-Edge Cooling Geometry Under Rotating Conditions
,”
AIAA J. Thermophys. Heat Transfer
,
33
(
3
), pp.
844
855
.10.2514/1.T5618
8.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1:2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
384
398
.10.1016/j.ijheatmasstransfer.2017.05.085
9.
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 Deg Rib Coverage Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p. 061015.10.1115/1.4043471
10.
Cheng
,
Y.
,
Rao
,
Y.
,
Su
,
P.
, and
Hu
,
L.
,
2023
, “
Numerical Analysis and Experiments on Heat Transfer and Flow Structures in Rotating Three-Pass Serpentine Channels With Ribs, Guide Vanes and Trailing Bleed Holes
,”
Int. J. Therm. Sci.
,
193
, p.
108529
.10.1016/j.ijthermalsci.2023.108529
11.
Beniaiche
,
A.
,
Ghenaiet
,
A.
, and
Facchini
,
B.
,
2017
, “
Experimental and Numerical Investigations of Internal Heat Transfer in an Innovative Trailing Edge Blade Cooling System: Stationary and Rotation Effects, Part 1—Experimental Results
,”
Heat Mass Transfer
,
53
(
2
), pp.
475
490
.10.1007/s00231-016-1822-5
12.
Beniaiche
,
A.
,
Ghenaiet
,
A.
,
Carcasci
,
C.
, and
Facchini
,
B.
,
2017
, “
Experimental and Numerical Investigations of Internal Heat Transfer in an Innovative Trailing Edge Blade Cooling System: Stationary and Rotation Effects, Part 2: Numerical Results
,”
Heat Mass Transfer
,
53
(
2
), pp.
491
505
.10.1007/s00231-016-1834-1
13.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
7
), p.
071701
.10.1115/1.2907437
14.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.10.1115/1.4003746
15.
Pardeshi
,
I.
,
Shih
,
T. I. P.
,
Bryden
,
K. M.
,
Ames
,
R.
,
Dennis
,
R. A.
,
Ding
,
S.
,
Xu
,
G.
,
Deng
,
H.
, and
Lu
,
R.
,
2015
, “
Flow and Heat Transfer in a Rotating and Non-Rotating Wedge-Shaped Cooling Passage With Ribs and Pin Fins
,”
AIAA
Paper No. 2015–1444.10.2514/6.2015-1444
16.
Liang
,
C.
, and
Rao
,
Y.
,
2020
, “
Computational Analysis of Rotating Effects on Heat Transfer and Pressure Loss of Turbulent Flow in Detached Pin Fin Arrays With Various Clearances
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
12
), p.
121803
.10.1115/1.4048476
17.
Liang
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
P.
,
2022
, “
Experimental and Numerical Study of the Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fin Arrays Under Rotating Conditions
,”
ASME J. Turbomach.
,
144
(
7
), p.
071007
.10.1115/1.4053488
18.
Carcasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Heat Transfer and Pressure Drop Measurements on Rotating Matrix Cooling Geometries for Airfoil Trailing Edges
,”
ASME
Paper No. GT2015-42594.10.1115/GT2015-42594
19.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer and Flow Structure in a Detached Latticework Duct
,”
Appl. Therm. Eng.
,
155
, pp.
24
39
.10.1016/j.applthermaleng.2019.03.148
20.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Effect of the Broken Rib Locations on the Heat Transfer and Fluid Flow in a Rotating Latticework Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
10
), p.
102102
.10.1115/1.4044247
21.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Endwall Heat Transfer Characteristics of Octahedron Family Lattice-Frame Materials
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105522
.10.1016/j.icheatmasstransfer.2021.105522
22.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
Appl. Therm. Eng.
,
211
, p.
118461
.10.1016/j.applthermaleng.2022.118461
23.
Al-Ketan
,
O.
,
Lee
,
D. W.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2020
, “
Functionally Graded and Multi-Morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103520
.10.1016/j.jmbbm.2019.103520
24.
Yeranee
,
K.
, and
Rao
,
Y.
,
2022
, “
A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded With Triply Periodic Minimal Surfaces (TPMS)
,”
Energies
,
15
(
23
), p.
8994
.10.3390/en15238994
25.
Yeranee
,
K.
,
Rao
,
Y.
,
Xu
,
C.
,
Zhang
,
Y.
, and
Su
,
X.
,
2023
, “
Turbulent Flow Heat Transfer and Thermal Stress Improvement of Gas Turbine Blade Trailing Edge Cooling With Diamond-Type TPMS Structure
,”
Aerospace
,
11
(
1
), p.
37
.10.3390/aerospace11010037
26.
Yeranee
,
K.
, and
Rao
,
Y.
,
2023
, “
Turbulent Flow and Heat Transfer Enhancement for Turbine Blade Trailing Edge Cooling With Gyroid-Type Triply Periodic Minimal Surfaces
,”
ASME J. Eng. Gas Turbines Power
,
145
(
7
), p.
071008
.10.1115/1.4062157
27.
Yeranee
,
K.
, and
Rao
,
Y.
,
2023
, “
Heat Transfer and Pressure Loss of Turbulent Flow in a Wedge-Shaped Cooling Channel With Different Types of Triply Periodic Minimal Surfaces
,”
ASME J. Heat Mass Transfer-Trans ASME
,
145
(
9
), p. 093901.10.1115/1.4062429
28.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6
), pp.
1
10
.10.1002/mdp2.205
29.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.10.1016/j.ijheatmasstransfer.2021.121590
30.
Xu
,
Y.
,
Islam
,
M. D.
, and
Kharoua
,
N.
,
2017
, “
Numerical Study of Winglets Vortex Generator Effects on Thermal Performance in a Circular Pipe
,”
Int. J. Therm. Sci.
,
112
, pp.
304
317
.10.1016/j.ijthermalsci.2016.10.015
31.
Zhai
,
C.
,
Islam
,
M. D.
,
Simmons
,
R.
, and
Barsoum
,
I.
,
2019
, “
Heat Transfer Augmentation in a Circular Tube With Delta Winglet Vortex Generator Pairs
,”
Int. J. Therm. Sci.
,
140
(
February
), pp.
480
490
.10.1016/j.ijthermalsci.2019.03.020
You do not currently have access to this content.